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Abstract

We examine the relative importance of asymmetric dependence (AD) and systematic

risk in the cross-section of US equities. Using a β-invariant AD metric, we demonstrate

a lower-tail dependence premium equivalent to 35% of the market risk premium, com-

pared with an upper-tail dependence discount that is 41% of the market risk premium.

Lower-tail dependence displays a constant price between 1989-2009, while the discount

associated with upper-tail dependence appears to be increasing in recent years. Subse-

quently, we find that return changes in US equities between 2007-2009 reflected changes

in systematic risk and upper-tail dependence. This suggests that both systematic risk

and AD should be managed in order to reduce the return impact of market downturns.

Our findings have substantial implications for the cost of capital, investor expectations,

portfolio management and performance assessment.
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Does the cross-section of stock returns reflect an premium for asymmetric dependence

(AD) independently of linear market risk? Do changes in upper and lower tail dependence

between stock returns and the market occur independently of fundamental shifts in sys-

tematic risk? Are the premia associated with upper and lower tail dependence equal and

unchanging? The existence of an AD discount or premium, separate from the premium

attached to linear dependence (β), will have significant impacts of the firms cost of capital

and capital raising decisions. Furthermore, the existence of an AD premium also raises

substantial questions about the ability of standard performance assessment metrics to

identify appropriate risk-adjustments to apply to returns.

We identify the existence and nature of an AD premium by employing an adjusted

version of the J-statistic (Hong, Tu, and Zhou, 2007) to capture the risk that a stock and

the market jointly decline (appreciate) in excess of the joint return decline (appreciation)

implied by ordinary market β. We then seperately control for Adjusted J and β in a

regression on returns in order to assess the relative size of the AD risk premia and the

market risk premia over time. We find that upper-tail (lower-tail) dependence attracts a

significant discount (premium), that is robust to controlling for commonly cited return

covariates.

The importance of AD in asset pricing has been well established in the literature

from both a conceptual and empirical perspective. By combining the existence of state-

dependent correlations with state-dependent investor preferences, we expect the downside

risk associated with lower-tail dependence (LTD) to attract a premium in asset prices,

whilst upside potential associated with upper-tail dependence (UTD) to yield a discount.

Bali, Demirtas, and Levy (2009) demonstrate this using Value-at-Risk (VaR) and ex-

pected shortfall to demonstrate a significant relationship between downside risk and the

returns of the NYSE/AMEX/NASDAQ value weighted index. Similarly. Post and van

Vliet (2006) use a stochastic dominance framework to show that downside risk is impor-

tant in explaining the high return of small, value and winner stocks, and Ang, Chen, and
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Xing (2006) find that downside β attracts a premium of approximately 6% per annum.

It has been difficult to identify whether changes in traditional tail risk metrics, such

as conditional upside and downside β and VaR, occur as a result of changes in the overall

relationship between stock returns and the market, or as a result of changes in the sensi-

tivity of stock returns to extreme market movements. The risk caused by upper and lower

tail co-movements and the ability to differentiate these risks from ordinary co-movements

is likely to have important implications for asset allocation decisions 1 . For example, an

increase in CAPM β will also be reflected by an increase in both upside and downside

β. In this instance, any downside risk hedge utilising changes in downside β is likely to

be confounded as downside risk will generally be offset by upside risk in the long run.

In general, the hedging demands of investors will differ for exposure to stocks that fall

disproportionately with market downturns, relative to upturns (an increase in tail-risk), in

contrast to stocks that are symmetric in their response to market movements (an increase

in systematic risk). In a Merton (1973) style dynamic economy, this leads to expected

stock returns that are linear functions of both market β and the sensitivity of a hedge

portfolio, the latter of which will depend on the magnitude and symmetry of upside and

downside responses to market returns.

The central question we address in this paper is whether upside and downside risk

associated with AD attract a premium independent of the premium attached to β. To the

best of our knowledge, the relative magnitude of the premia attached to dependence driven

tail risk and ordinary market risk has yet to be established 2 . To highlight the importance

1 A significant reduction in portfolio value can occur with moderate market declines if dependence is state-dependent,

particularly if there is a tendency for dependence amongst assets to increase more during bear market periods relative

to bull market periods. Dependence of this nature has been established between international equity indices and amongst

subsets of the US equity market (Ang and Bekaert, 2002; Ang and Chen, 2002; Butler and Joaquin, 2002; Campbell, Koedijk,

and Kofman, 2002; Erb, Harvey, and Viskanta, 1994; Hartmann, Straetmans, and de Vries, 2004; Hong, Tu, and Zhou, 2007;

Longin and Solnik, 2001; Patton, 2004; Ramchand and Susmel, 1998) suggesting that state-dependence is non-diversifiable.
2 Pedersen and Hwang (2007) show that the CAPM can be used to explain 50–80% of the returns of UK equities, while

downside β explains only 15–25%. The authors therefore rule out the general applicability of downside β in explaining UK

equity return variation on the basis of the proportion of equities explained by the CAPM and the lower-partial moment
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of considering the systematic risk premium separate from the premia attached to AD,

consider two assets, A and B, that have identical βs, equal average returns, and the same

level of dependence in the lower tail. Furthermore, suppose B displays dependence in the

upper tail that is equal in absolute magnitude to the level of dependence in the lower

tail, but A has no dependence in the upper tail. In this example, B is symmetric (but

not necessarily elliptical), whereas A is asymmetric displaying lower-tail dependence (see

Figure 1). The return associated with an exposure to systematic risk should be the same

for A and B because they have the same β. In addition, a rational, non-satiable investor

that accounts for relative differences in upside and downside risk should prefer B over A

because B is less likely to suffer from cumulative losses in the long run compared to A.

A downside risk averse investor should also prefer B over A as the long term risk of loss

is lower for B. These preferences should drive higher returns for assets that display LTD

and lower returns for assets that display UTD, independent of the returns attached to β.

[Figure 1 about here]

Our main contribution to the existing literature is two-fold. Our first contribution lies

in measuring AD over and above the tail dependence implied by β, rather than method-

ological improvements over previous studies in this area. We achieve this using an adjusted

version of an existing asymmetry metric to build on the previous efforts of Ang, Chen,

and Xing (2006). We do not dispute the existence of a downside risk premium nor the eco-

nomic framework upon which the premium is built in the literature. Rather, we find that

despite the statistical significance of LTD in explaining cross-sectional return variation,

the magnitude of the associated downside risk premium is only 35% of the magnitude

of the premium for traditional β. Furthermore, we find UTD attracts a discount, and

represents 41% of the premium attached to β making it relatively more important than

the downside risk associated with LTD in explaining equity return variation. These re-

asset pricing framework. They do not quantify the relative magnitude of the compensation for systematic and downside

risk, however.
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sults hold after controlling for book-to-market ratio, size, past return, idiosyncratic risk,

coskewness and cokurtosis, and are tested for robustness by using alternative data length

specifications and by analyzing whether past AD can predict future return.

Our second contribution involves an analysis of how the AD premia has changed over

time relative to the premium for systematic risk. We find that the premium associated

with LTD has been priced at a relatively constant level of 0.6% pa (per unit of downside

risk loading) over the 20 years ranging between 1989 and 2009. Changes in AD therefore

occur as a result of changes in the preference for stocks that display UTD with the market,

or as a result of changes in the sensitivity of stock returns to upward market movements.

In addition, the 2007-2009 financial crisis appears to be as much a systematic risk story

as it is an AD story implying that the risks associated with both linear dependence and

higher-order dependence should be managed to reduce the portfolio impact of future

market crashes.

Our results therefore build on previous work by Ang, Chen, and Xing (2006) by show-

ing that both linear dependence and higher-order dependencies are important in the

cross-section. These results imply that important price information is contained within

the relative magnitude of upside and downside risk as well as within the overall relation-

ship between asset returns.

1 The Adjusted J Statistic

1.1 Capturing Asymmetric Dependence

We measure AD using an adjusted version of the J statistic, originally proposed

by Hong, Tu, and Zhou (2007). JAdj is a model free and β-invariant statistic that measures

AD using conditional correlations across opposing sample exceedances. Several alternative

metrics have been used to assess non-linearities in the dependence between asset returns,

including downside Beta (Ang, Chen, and Xing, 2006), copula function parameters (see

5



Genest, Gendron, and Boureau-Brien, 2009), and the J-statistic itself. However these met-

rics have difficulty capturing the sensitivity of asset returns to AD independently of other

price-sensitive factors such as the CAPM Beta, as they are not β-invariant.

[Figure 2 about here]

To illustrate this point, we simulate N = 25000 pairs of random variables (x, y) where

xi ∼ N(0.25, 0.15), and yi = βxi + εi, where εi ∼ N(0, (xi + 0.25)α). When α = 0, no AD

is present, and (x, y) are bivariate normal with linear dependence equal to β. Higher LTD

is proxied by increasing α > 0, and higher UTD is proxied by decreasing α < 0. OLS

estimates of the CAPM Beta and downside Beta, IFM estimates 3 of the Clayton copula

parameter of lower tail dependence are provided in Figure 2, for various combinations of

α and β. The CAPM Beta and downside Beta are largely insensitive to AD and their

estimates of linear dependence are not confounded by the presence of AD. The Clayton

copula parameter is unable to uniquely identify either the presence or level of AD or of

linear dependence. This seems to be due to the fact that the Clayton copula parameter

attempts to fit both dimensions of dependence with a single parameter. As a result, the

copula measure of AD is sensitive to the value of linear dependence and to the value of

α. Almost all copula families, including multi-parameter families, will similarly be unable

to determine AD separate from linear dependence unless one parameter is especially

dedicated to estimating linear dependence. To the best of our knowledge, a copula with

these characteristics is yet to be described in the literature.

[Figure 3 about here]

1.2 Adjusting the J-statistic

The J-statistic is able to identify AD and also provide critical values to establish a

hypothesis test on the presence of AD. We introduce a β-invariant J statistic, in order

3 For full details on the Inference Function for Margins (IFM) method of estimating copula parameters, see Joe (1997)
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to establish the AD premium separately from the CAPM β premium while retaining

the integrity of the dependence structure. We obtain β-invariance by unitizing β for

each data set before a modified version of the J statistic is computed. In particular,

given {Rit, Rmt}Tt=1 (Figure 4(a)), we first let R̂it = Rit − βRmt (Figure 4(b)) where

Rit and Rmt are the continuously compounded return on the ith asset and the market

respectively, and β = cov(Rit, Rmt)/σ
2
Rmt . This initial transformation sets βR̂it,Rmt = 0

making it possible to standardize the data without contaminating the linear relationship

between the variables (Figure 4(c)). Standardization yields RS
mt and R̂S

it and ensures that

the standard deviation of the market model residuals, a measure of idiosyncratic risk,

is identical for all data sets 4 . We then re-transform the data to have β̂ = 1 by letting

R̃mt = RS
mt and R̃it = R̂S

it+R
S
mt (Figure 4(d)). Therefore, all data display the same β after

these transformations 5 , forcing the output of JAdj to be invariant to the overall level of

linear dependence, as well as being independent to idiosyncratic risk. The β-invariance of

JAdj is demonstrated in Figure 3, calculated using the same simulations as in Section 1.1.

[Figure 4 about here]

JAdj is given by:

JAdj =
[
sgn

([
ρ̃+ − ρ̃−

]
1
)]
T
(
ρ̃+ − ρ̃−

)′
Ω̃−1

(
ρ̃+ − ρ̃−

)
, (1)

for ρ̃+ = {ρ̃+(δ1), ρ̃+(δ2), . . . , ρ̃+(δN)} and ρ̃− = {ρ̃−(δ1), ρ̃−(δ2), . . . , ρ̃−(δN)}, where, 1 is

an N × 1 vector of ones, Ω̂ is an estimate of the the variance-covariance matrix (Hong,

4 From the market model, total variance of a stock’s returns can be written as σ2
T = β2σ2

M + σ2
ε where σ2

M is the markets

variance and σ2
ε is the variance of the idiosyncratic component of returns. Since we set β = 0, σ2

T = σ2
ε . Hence, standardizing

at this point is equivalent to dividing out the idiosyncratic component of transformed returns.
5 At this point, R̃mt ∼ N(0, 1) whereas R̃it ∼ N(0,

√
2) assuming marginal distributions are normal. This holds for all

data sets.
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Tu, and Zhou, 2007) for the difference vector (ρ̃+ − ρ̃−) and:

ρ̃+(δ) = corr
(
R̃mt, R̃it|R̃mt > δ, R̃it > δ

)
(2)

ρ̃−(δ) = corr
(
R̃mt, R̃it|R̃mt < −δ, R̃it < −δ

)
. (3)

|JAdj| ∼ χ2
N following Hong, Tu, and Zhou (2007) 6 . Where dependence is symmetric

across upper and lower tails, JAdj will be near zero. Conversely, any strong asymmetries

in dependence between upper and lower tails will result in a significant, non-zero JAdj. A

positive (negative) JAdj is indicative of UTD (LTD), over and above the tail dependence

implied by ordinary β.

In its own right, JAdj captures both LTD and UTD between a stock and the market.

In order to isolate upside and downside risk for the purposes of our regression analysis,

we compute:

JAdj+ = JAdjIJAdj>0 (4)

JAdj− = JAdjIJAdj<0, (5)

where Ia is an indicator function taking a value of 1 when the condition, a, is satisfied

and zero otherwise.

As a non-parametric measure of AD, the JAdj statistic facilitates the separation of the

actual price of tail dependence from the effect of non-normal marginal return character-

istics. Furthermore, it is consistent with Stapleton and Subrahmanyam (1983) and Kwon

(1985) who suggest a means of deriving a linear relationship between β and expected

return without the need for multivariate normal assumptions. JAdj is also consistent with

the empirical evidence that correlations tend to be larger in the lower tail of the joint

6 The transformations described represent (nonsingular) affine transformations that may ultimately be expressed as linear

transformations (Webster, 1995). Birkhoff and Lane (1997) show that a nonsingular linear transformation of the space,

V , is an isomorphism of the vector space, V , to itself. The assumptions used by Hong, Tu, and Zhou (2007) to derive an

asymptotic distribution for the J statistic therefore holds for the transformed returns
{
R̃1t, R̃2t

}
. |JAdj | ∼ χ2

N then follows

the proof described in Hong, Tu, and Zhou (2007).
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return distribution compared to the upper tail (Ang and Chen, 2002; Longin and Solnik,

2001). LTD exists provided dependence in the lower tail exceeds dependence in the up-

per tail. Normality in the opposite tail is not required by this definition which precludes

parametric alternatives, such as the H statistic (Ang and Chen, 2002), for the purposes

of our investigation.

An advantage of transforming the data in the way described above is that the standard

deviation of market model residuals is forced to be the same across data sets. Controlling

for the effects of idiosyncratic risk is important given the recent debate over whether

idiosyncratic risk is relevant in an asset pricing context (Bali, Cakici, Yan, and Zhang,

2005; Goyal and Santa-Clara, 2003). It is often argued that idiosyncratic risk should be

priced whenever investors fail to hold sufficiently diversified portfolios (Campbell, Lettau,

Malkiel, and Xu, 2001; Fu, 2009; Merton, 1987). However, when tail risk is characterized

by dependence that increases during down markets, the ability to diversify will be effected

and the ability to protect the portfolio from risk will be reduced. Hence, downside risk may

be mistakenly identified as idiosyncratic risk. Where this occurs, we expect idiosyncratic

risk to increases as downside risk increases. Standardizing market model residuals allows

us to distinguish between downside risk and other firm specific risks.

Note that because tail risk is estimated by analyzing the difference in correlation

beyond N exceedances, the occurrence of net AD may be contingent upon a relatively

small number of positive or negative joint returns. As a result, any measure of AD will

suffer from a high likelihood of Type II errors making it difficult to detect AD unless large

data sets are utilized. Consequently, we present conservative estimates of AD between

equity returns and the market.
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2 A Closer Look at the Asymmetric Dependence Risk Premium

2.1 Empirical Design

Our methodology broadly follows Ang, Chen, and Xing (2006), to build on the existing

evidence of a downside risk premium in the cross-section. We analyze the contempora-

neous relationship between systematic risk, AD and returns, controlling for a range of

factors including size, book-to-market ratio, past 12-month excess return, idiosyncratic

risk, coskewness and cokurtosis 7 . A particular factor is a relevant risk attribute if high

adverse factor changes coincide with higher return, consistent with the concept of a con-

temporaneous risk-return relationship (Black, Jensen, and Scholes, 1972; Gibbons, 1982).

The Adjusted J measure of AD is calculated with exceedances δ = {0, 0.2, 0.4, 0.6, 0.8, 1}

in conjunction with the Bartlett kernel, following Hong, Tu, and Zhou (2007), for the esti-

mation of the variance-covariance matrix, Ω̂. We measure risk premia using the Fama and

MacBeth (1973) asset pricing procedure where cross-sectional regressions are computed

every month rolling forward using a 12 month window to estimate the relevant factors. We

measure statistical significance using Newey and West (1987) adjusted t-statistics to con-

trol for overlapping data using the Newey and West (1994) automatic lag selection method

to determine the lag length 8 . The use of short, rolling window risk factor estimates may be

better positioned to account for the evidence of time variation in systematic risk (Blume,

1975; Bollerslev, Engle, and Wooldridge, 1988; Bos and Newbold, 1984; Fabozzi and Fran-

cis, 1978; Ferson and Harvey, 1991, 1993; Ferson and Korajczyk, 1995) and any potential

time variation in tail dependence relative to a static model. Furthermore, estimates based

on short windows are thought to have higher power in an environment where risk factors

may be time varying. We test the robustness of our results to alternative window lengths

7 A contemporaneous methodology attempts to avoid the errors-in-variables problem (Kim, 1995) that occurs when relating

risk factors estimated using past data with returns in a future period using the two-pass methodology. This facilities the

performance of cross sectional regression for individual securities rather than for portfolio groupings.
8 Although the theoretical number of lags required to account for the use of overlapping data is 11, the Newey and West

(1994) automatic lag selection method produces an optimal lag length of 14 given the length of data we consider.
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in Section 3.1.

2.2 Data

At a given month, t, the average of the next 12 excess monthly returns is regressed

against combinations of CAPM β, upside and downside β, idiosyncratic risk , coskewness,

cokurtosis and JAdj estimated using the next 12 months of daily excess return data, and

size, book-to-market ratio, and average past 12-monthly excess return 9 , computed as at

time t. We measure idiosyncratic risk as the standard deviation of market model residuals.

We substitute this measure for realized return volatility used by Ang, Chen, and Xing

(2006) because we explicitly involve ordinary β in our regression methodology. Including

β and realized return volatility, measured as the standard deviation of realized excess

returns, would induce multicollinearity into our analysis and therefore bias our results. We

proxy the market portfolio with the CRSP Value Weighted return of all NYSE, AMEX

and NASDAQ stocks and the risk free rate with the 1 month Treasury bill rate. All

regressors are Winsorized at the 1% and 99% level at each month to control for outliers

and inefficient factor estimates.

We use daily data to estimate risk factors primarily to ensure we have sufficient obser-

vations to accurately measure upside and downside risk, estimated using JAdj. Although

risk factor estimates computed using daily data over short periods are likely to be noisy

compared to estimates computed with lower frequency data over longer periods, subse-

quent tests of the significance of factor risk premium will have reasonable power because

they are estimated using a long time series of estimates (Lewellen and Nagel, 2006).

In order to minimize the possibility of non-synchronous trading associated with the

use of daily data, we restrict our attention to stocks listed on the NYSE 10 between July

9 We control for Pastor and Stambaugh (2003) liquidity β in a separate regression in Section 3.1 given the different data

treatment required to estimate liquidity β.
10 All data are collected from CRSP. See Appendix A for a details of our data collection process.
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1963 and December 2009. The sample size at each month is depicted in Figure 5.

[Figure 5 about here]

2.2.1 Factor Correlation

Table 1 highlights the difficulty in measuring a separate premia for AD and ordinary

market risk using conditional β. Computing the correlation between risk factors for our

entire sample, we find that upside and downside β are both highly correlated with ordinary

β, implying that conditional β cannot be included in the same regression as ordinary β

due to multicollinearity.

[Table 1 about here]

Consistent with it’s construction, JAdj and β are virtually independent with correlation

equal to 0.054, indicating that AD, be it LTD or UTD, exists independent of systematic

risk. This has implications for risk management and portfolio construction. For example,

two portfolios with equal βs will likely display varying degrees of market risk given the

existence of AD. Significant tail dependence may have therefore contributed to the losses

experienced by equity market neutral hedge funds during August of 2007 (Khandani and

Lo, 2007). We investigate whether this hypothesis is evident in our sample in Section 2.6.

The orthogonality between β and JAdj may also affect particular aspects of asset

pricing. In particular, a zero-β portfolio may not necessarily be a risk free portfolio due

to the existence of AD. Black, Jensen, and Scholes (1972) find that portfolios with zero

covariance with the market display average returns that significantly exceed the risk free

rate. This is consistent with the existence of tail risk that could cause the market risk of

the zero-β portfolio to be significantly different from zero.

We find that JAdj displays the largest correlation with return out of all variables we

consider (coefficient of -0.136). Consistent with prior literature, the negative coefficient im-

plies that stocks that display higher downside risk experience the highest average monthly
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return over the same period. In contrast, β and return are positively correlated as are β−

and return, however, the correlation with β− is larger in magnitude, consistent with a

market aversion to downside risk.

2.3 Distribution of JAdj

We depict the distribution of AD, as measured by JAdj, for all firms in our sample

between 1963 and 2009 following the methodology described in the previous section. A

histogram of all JAdj observations reveals that the distribution of JAdj is (asymmetrically)

bi-modal with 67.33% of JAdj observations less than zero, and the remaining 32.67% of

observations greater than zero.

[Figure 6 about here]

For comparison, we include the distribution of the JAdj computed using simulated

multivariate normal data, parameterized at each month (Figure 6(b)). The size of each

sample is chosen to match the number of days in each 12 month period. The distribution is

(symmetrically) bi-modal with a statistically insignificant average of -0.004. Comparison

with Figure 6(a) suggests that AD is more of a characteristic of actual returns data than

what is suggested under multivariate normality.

There are likely to be a number of reasons for the observation that LTD occurs more

often than UTD. One possibility is offered by Bekaert and Wu (2000) who effectively

suggest that AD may be driven by the asymmetric effects of news on the conditional

covariance between stock and market returns. They argue that asymmetric volatility at

the firm level is a direct result of asymmetric covariance with the market. The negative

price reaction caused by volatility feedback offsets the initial price increase associated with

good news and amplifies the negative price reaction associated with bad news. In order

to explain asymmetric volatility for individual stock returns, an asymmetric response in

the covariance between stock returns and the market is required because changes in firm-
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specific volatility can be theoretically diversified away. Our results are consistent with

Bekaert and Wu’s finding that the dependence is effected more by jointly negative shocks

to firm level and market level returns compared to jointly positive shocks.

2.4 Conditional Dependence Patterns

In light of the correlation among factors and between factors and returns observed

in Section 2.2.1, it is important to ensure that the relationship between JAdj and return

does not simply reflect a relationship between return and some unidentified latent risk. We

therefore investigate the interplay between dependence and return by analyzing patterns

in the contemporaneous relationship between realized average return and realized risk.

We begin by informally examining the likelihood that the downside β–return relation-

ship indirectly reflects the relationship between β and return using the double sorting

methodology used by Fama and French (1992). Specifically, we first sort stocks into β

deciles and then into β− deciles within each β decile at each month between January 1963

and December 2009, and then record the equal weighted average return for each portfolio.

[Table 2 about here]

After controlling for β, we observe a positive relationship between β− and return, but

only for the highest β deciles (Table 2, Panel A). This indicates that β− does contain some

useful information regarding return variation over and above the information contained

within β. However, the lack of a β−–return relationship for the lowest deciles of β indicates

that the relationship might be conditional upon particular values of ordinary β. This is

consistent with our argument that it may be difficult to differentiate compensation for

ordinary market risk from compensation for the risk associated with AD. Furthermore,

a larger spread in the highest and lowest β deciles compared to the highest and lowest

β− deciles suggests that the strength of the relationship between β and return is stronger

than the relationship between β− and return. This could indicate a loss of information
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resulting from a focus on the lower tail of the joint distribution without reference to the

upper tail in the calculation of β−. As a result, information about the upper tail of the

distribution might be required in the measurement of LTD and its impact on returns,

providing justification for our measure of AD.

After controlling for β, we find a positive relationship between LTD and return re-

gardless of the level of β (Panel B). The average return and the spread between the 1st

and 10th JAdj decile are also seen to increase with β. This suggests that higher returns

associated with high LTD exists irrespective of β, however, compensation for differences

in AD between groups become larger as β risk increases. This could imply that an increase

in systematic risk coincides with an increase in downside risk when systematic risk is high,

and less so when systematic risk is low. Furthermore, if a larger return spread is assumed

to provide an indication of the strength of the relationship between risk and return, JAdj

is more capable than β− to capture the AD risk not captured by β.

We informally test whether the observed relationship between JAdj and return indi-

rectly reflects the relationship between return and size or coskewness risk in Panel C and

D respectively. We continue to find a monotonic relationship between JAdj and return

despite controlling for these factors. Furthermore, the return spread and average across

JAdj deciles for each characteristic decile is comparable in magnitude to the return spread

associated with size and coskewness. This provides further evidence that the relationship

between JAdj and return in is not a reflection of compensation for variation in coskewness

or size. The existence of an AD premium measured using JAdj is therefore distinct from

the risk-premia attached to these factors.

2.5 Regression Results

We apply the Fama and MacBeth (1973) methodology between 1963 and 2009, but

have included regression results for the sub-sample between 1963 and 2001 in Appendix ??

to facilitate direct comparison of our results with those presented by Ang, Chen, and Xing
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(2006).

Regression I and II in Table 3 Panel A indicate that our methodology is able to generate

comparable results to those presented by Ang, Chen, and Xing (2006). For example, we

find that β, β− and β+ are significantly related to returns. The sensitivity attached to

conditional β implies an increase in returns of 8% pa for a 1 unit increase in β− and a

decrease in returns of 2.8% pa for a 1 unit increase in β+ suggesting that upside and

downside risk, measured by conditional β, are priced asymmetrically. A 1 unit increase in

ordinary β is associated with a 13.3% pa increase in returns. The magnitude of this market

risk premium estimate differs from traditional market risk premium estimates (Dimson,

Marsh, and Staunton, 2003; Pastor and Stambaugh, 2001; Siegel, 1992) due to the use

of equally weighted regressions. We subsequently test our results for robustness using

value weighted regressions in Section 3.1. Our coefficient for β in Table 3 is similar to the

coefficient reported by Ang, Chen, and Xing (2006) when computed on an average factor

loading basis.

[Table 3 about here]

To assess the relative importance of systematic risk and AD risk in the cross section,

we regress returns on β and JAdj in regression III, controlling for the standard set of

factor risks. We find that both systematic risk and AD are significantly priced. Consistent

with expectations, the negative coefficient attached to the JAdj factor loading implies that

stocks with LTD (JAdj < 0) attract a premium and stocks with UTD (JAdj > 0) attract a

discount. Based purely on factor loadings, a 1 unit increase in β equates to an 12.8% pa

increase in returns, similar to the coefficient attached to β in regression I, whilst a 1 unit

increase (decrease) in JAdj equates to a 0.6% pa decrease (increase) in return. This implies

that the premium for AD is only 4.69% of the premium for systematic risk. However, this

interpretation ignores differences in scale between β and JAdj. A 1 unit increase in β is

equivalent to a 1.93 standard deviation move based on observed β standard deviation of
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0.517, whereas a 1 unit increase in JAdj is equivalent to only 0.162 of a standard deviation,

based on observed JAdj standard deviation of 6.180.

Incorporating differences in scale between β and JAdj increases the importance of

AD, in its own-right, relative to systematic risk in the cross-section. For example, the

magnitude of the JAdj risk premium, computed for a one standard deviation increase in

JAdj, is 56.03% of the magnitude of the β risk premium computed for a one standard

deviation increase in β. This highlights the importance of accounting for the effect of

changes in both systematic risk and AD on returns.

We regress returns on JAdj+ and JAdj−, defined in (4) and (5) respectively, in order to

isolate the premia attached to upside and downside risk. After accounting for scale, we find

that UTD is more important, relative to β, than LTD in the cross-section. For example,

regression IV indicates that LTD, given by JAdj−, is 34.99% of the β risk premium,

whereas UTD, given by JAdj+, is 41.58% of the β risk premium, both accounting for

scale.

Replacing β with β+ and β− (ignoring the potential multicollinearity issue) in regres-

sion V yields little change in our results. The significance attached to β− and β+ indicates

that censored measures of linear dependence are priced in the cross section, where in par-

ticular, downside measures are more heavily priced than upside measures. The significance

attached to JAdj− and JAdj+ continues to indicate that UTD and LTD attract a price in

the cross section.

A significant positive (negative) relationship between lower (upper) tail dependence

and return is consistent with existing evidence of a preference towards stocks that display

upside risk. Given the way we measure AD, our results imply that investors may display

relative disappointment aversion consistent with Skiadas’ (1997) preference framework.

That is, investors display conditional preference relations for all possible joint outcomes

of security and market returns.

Our results suggest that higher order dependence (in the form of UTD and LTD) is
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as important as linear dependence in explaining the variation in returns, implying that

the CAPM ignores a significant characteristic of the joint return distribution. Investors

should not only be concerned with the overall level of linear dependence between stock

returns and the market, they should also be concerned with the symmetry of the joint

return distribution around β.

MacKinlay (1995) argues that if a set of factors results in a zero mispricing vector,

then a linear combination of these factors can be combined to define the market portfolio,

consistent with Sharpe (1977). Inefficiencies in the market proxy will therefore affect the

linear relationship between β and return and may cause other variables to have explana-

tory power in cross-sectional asset pricing tests (Roll and Ross, 1994). A proxy for the

market portfolio may be mean-variance inefficient if the number of assets in the proxy do

not lead to complete convergence to multivariate normality. The significance of firm spe-

cific factors in cross-sectional tests might therefore reflect the slow convergence of higher

order dependence terms to zero for the most commonly used market proxies. We consider

with the speed of convergence to normality drives our results in Section 3.

If expected returns can be written as a linear function of k factors, then k-fund sepa-

ration can be used to span the mean-variance efficient frontier (Fama, 1996; Ross, 1978).

This implies that a mean-variance efficient portfolio defined by linear dependence is un-

likely to be efficient with respect to an efficient portfolio spanned by both linear and

asymmetric dependence. This suggests that the risk of a well diversified portfolio will

reflect both the average covariance and the average tail dependence between the assets.

Using deep out-of-the-money index options, Bollerslev and Todorov (2009) show that

compensation for investor fear towards low probability, highly catastrophic events ac-

counts for a substantial fraction of the equity risk premium in the US market. When

applied to individual equities, the risk premium for downside risk is likely to depend on

the magnitude of the relationship between the stock’s returns and the aggregate market.

Our results suggest that there need only be a tendency for stocks to display higher depen-
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dence during market downturns relative to upturns for a tail dependence risk premia to

arise. This is a weaker condition than the requirement of a low probability, highly catas-

trophic market crash. Of course, what would otherwise be a market decline can quickly

precipitate into a potential market crash in the presence of levered positions in tail risk.

In particular, Diamond and Rajan (2009) and Rajan (2006) describe an incentive for

managers to load up on ‘hidden’ downside risk in the form of tail risk and report the

compensation as reward for α. This may partly explain the excess risk taken by managers

prior to the 2007-2009 financial crisis.

2.6 Time Varying Risk

Tail-risk management has been of increasing concern amongst practitioners in recent

years, particularly in the aftermath of the sub-prime crisis and the ensuing global finan-

cial crisis (Bhansali, 2008). The development of a superior tail-risk management product

therefore represents a potentially important and lucrative enterprize as the economy re-

covers and proceeds into the next boom-bust cycle. In the absence of a zero-cost tail risk

hedge, investors must identify whether such products are justified in light of what drives

market crashes historically, and the likelihood of these drivers being associated with fu-

ture market failures. Products that manage changes in linear dependence are likely to

look much different from products that manage changes in AD. However, products that

target increases in systematic risk when crashes are driven by changes in AD (and vice

versa) may not adequately protect portfolios during market crashes. In order to identify

the extent that investors should be concerned with this problem, we examine the relative

importance of systematic risk (changes in linear dependence) and AD (changes in higher

order dependence) over time.

The increasing concern for tail-risk management is likely to reflect either an increase

in the sensitivity of individual securities to market movements, an increase in aversion to

risk, or some combination of the two. To capture potential changes in aversion to risk,
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we re-estimate model IV of Table 3 using the Fama and MacBeth (1973) procedure at

each month t between January 1989 and January 2009. The factor premium at time t

is then given by the median of all regression coefficients associated with that factor up

to and including time t. We have chosen to compute the factor premium using medians

because we are interested in the trend in risk premium over time rather than an accurate

portrayal of the compensation for risk. Short-term, non-permanent increases in regression

coefficients are likely to result in permanent changes in risk premium estimates computed

using averages over all historical coefficient estimates. Changes in the median regression

coefficient are therefore more likely to reflect permanent trend changes rather than short-

term trend changes. Similarly, we capture changes in the factor loadings by computing

the median of a given factor at time t using all observations up to and including t.

An inspection of the average loading attached to β, JAdj− and JAdj+ indicates that

the heightened concern for tail risk management is unlikely to be a result of changes in

stock sensitivity to market movements (Figure 7(a)). To highlight this point, observe that

the median loading on JAdj− between 2007 and 2009 appears no greater than the median

loading immediately prior to this 11 , indicating that the sensitivity to market crashes has

not altered significantly, relative to historical sensitivity, in response to the financial crisis.

Similarly, there was an increase in systematic risk (β) between 2007 and 2009, however

the magnitude of this increases does not differ significantly from the level of increase that

began in 2001.

A plot of the factor sensitivity attached to β (per unit of factor loading) highlights

the change in the price of systematic risk corresponding to the run up in prices during

the 1990s (Figure 7(b)). Despite the use of medians in our estimation of risk premia, the

magnitude of this sensitivity subsequently remains at this heightened level with only a

slight decrease from November 2006 onwards. This implies that systematic risk is priced

11 This observation holds after scaling by the standard deviation of JAdj− at each month.
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at a higher level between 2000 and 2009 compared to the previous decade. Furthermore,

the run-up in prices during the 1990s had more of an effect on the reward for systematic

risk than the market turmoil of 2007-2009. Combined with the slight increase in β loading

over this time, the net effect is a slight increase in the β risk premium during the financial

crisis.

[Figure 7 about here]

Interestingly, the positive premium attached to LTD has remained relatively constant

between 1989 and 2009, suggesting that LTD has been priced in equities for a long period

of time. The discount attached to upside potential, on the other hand, increased markedly

between 1990 and 2007 and decreased slightly from 2007 onwards. Taken together, this

implies that the market became more downside risk averse overall, but more as a result

of increased demand for stocks displaying sensitivity to market upturns rather than as

a result for an increased aversion to stocks with downturn sensitivity. In the context

of Skiadas’ downside risk framework, where disappointment is judged with respect to

outcomes that could have occurred, this implies that a stock with constant downside

market sensitivity will attract an increasing risk premia over time due to the increasing

importance of stocks that generate elating outcomes.

On the basis of changes in risk premia, the 2007-2009 financial crises appears to be

as much a systematic risk story as it is a tail risk story implying that the risks asso-

ciated with both linear dependence and higher-order dependence should be managed to

insulate a portfolio from future market crashes. For many investors, techniques to manage

changes in systematic risk are likely to be already in place, particularly through the ability

to tactically allocate funds between assets on the basis of changes in overall fundamentals.

A value accreting tail-risk management product should therefore target changes in tail

dependence over and above the tail dependence implied by β. Furthermore, such prod-

ucts should account for changes in the relative aversion to upside and downside market
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movements.

3 Robustness

3.1 Alternative Data Specifications

We analyze the magnitude of the AD risk premium, relative to the premium for β, for

alternative data frequencies and window lengths. We perform this test for two reasons.

First, given that risk and return are measured using 12 month rolling windows in Sec-

tion 2.6, there is a possibility that our risk measures are not actually contemporaneously

related to returns. An example might be if stocks tended to increase early within the

window, thereby increasing the chance of stocks having a very negative return later in

the window (reverse causality). Although we expect the use of overlapping data to largely

preclude this, we seek to rule out this possibility by re-performing our regressions using

alternative window sizes for estimation purposes. Second, it is possible for our measure of

AD to reflect market microstructural characteristics given the use of daily data. For exam-

ple, non-synchronous trading has been known to bias inferences of the temporal behavior

of asset returns (Lo and MacKinlay, 1990; Shanken, 1987). To ensure the robustness of

our results to this problem, we analyze the magnitude of the premium for AD, relative to

the premium for β, using alternative data frequencies.

We present Fama and MacBeth (1973) regression results based on risk factor estimates

computed using 6, 24 and 60 months worth of daily data, 3 and 5 years worth of weekly

data and 5 years worth of fortnightly data, where estimation takes place each month

rolling forward. We find that UTD, LTD, β and downside β are significant using any of

the daily data specifications we consider (Table 4). The effect of moving from a 60 month

window to a 6 month window appears to be an increase in the importance of the AD risk

premium relative to the premium attached to β risk (the premium attached to JAdj is

6.2% and 82.9% of the β premium per standard deviation of loading for the 60 month and
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6 month window respectively). For our results in Section 2.6 to reflect reverse causality

within our chosen window size, we would expect the sensitivity attached to JAdj to become

smaller in magnitude and less significant. This indicates that our results reflect an actual

contemporaneous relationship between risk and return and not reverse causality within

our chosen window size.

[Table 4 about here]

We do not find that market microstructural biases are sufficient to explain our main

results on the basis that shifting to weekly or fortnightly data does not eliminate the sig-

nificance attached to JAdj−. For example, the coefficient attached to JAdj− is insignificant

for fortnightly and weekly data with a 5 year window, but is significant for weekly data

with a three year window. For microstructural bias in daily data to drive our results, we

should not expect significance for any window length using lower frequency data.

Inspection of the similarities in the mean and standard deviation of JAdj estimates

across scenarios in Panel B suggests that the insignificance of JAdj for long data lengths

reflects a breakdown in the relationship between AD risk and return rather than conver-

gence to normality following the central limit theorem (Cont, 2001; Kullmann, Kertesz,

Toyli, Kaski, and Kanto, 2000). AD exists, but is not priced over longer horizons 12 whereas

systematic risk is priced regardless of the window length. This suggests the market is risk

averse in general, but displays disappointment aversion over short intervals.

This is reminiscent of the investor preferences considered by Benartzi and Thaler

(1995) in their explanation of the equity premium puzzle. Specifically, loss averse investors

are found to be indifferent between stocks and bonds provided their evaluation period is in

the neighborhood of one year 13 . Benartzi and Thaler (1995) suggest that short evaluation

12 Although JAdj− is statistically significant using daily data with a 60 month window, the magnitude of the sensitivity is

economically insignificant in comparison to the JAdj− sensitivity computed using smaller window lengths.
13 Benartzi and Thaler (1995) differentiate between investment horizon, which can be greater than 1 year, and an evaluation

period referring to the length of time before the investor evaluates the performance of their portfolio with respect to their

objectives.
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horizons arise as a result of agency costs in the case of pension and endowment fund

managers, and as a result of receiving comprehensive information about investments and

having to file taxes annually in the case of individuals. Fielding and Stracca (2007) find

that short evaluation horizons are necessary to explain the historical equity risk premium

using loss aversion, whereas longer evaluation horizons can be accommodated if it is

assumed that investors are disappointment averse in framework developed by Gul (1991).

A combination of myopic loss aversion and disappointment aversion could therefore result

in the observations of Table 4.

Value weighted regressions fail to eliminate the significance associated with β, JAdj− or

JAdj+ and actually increase the importance of AD relative to systematic risk accounting

for differences in scale between β and JAdj.

The second last column of Table 4 presents regression results using non-overlapping

data. Risk factors are estimated using daily returns each fiscal year and are regressed on

average monthly returns over the same period. Non-overlapping data reduces the sample

size and subsequently has lower power in determining an AD risk premium. Nevertheless,

we find β and JAdj− to be significant (we use ordinary t-statistics to determine the

significance) factors in explaining return variation. Inspection of the standard deviation

attached to β suggests that β is estimated inefficiently compared to the overlapping data

case. In contrast, the standard deviation attached to JAdj− differs little when moving

from overlapping to non-overlapping data. The net result is an AD risk premium that

represents only 10.16% of the premium attached to β, accounting for scale. Although this

differs substantially compared to the results of Section 2.6, a different conclusion may be

drawn if non-overlapping regressions were performed with factor estimates computed over

a much longer period of time than 12 months.

Finally, our results are unchanged when controlling for aggregate liquidity risk, mea-

sured by the Pastor and Stambaugh (2003) liquidity β, in the final column of Table 4.
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3.2 Predictive Results

Consistent with prior asset pricing research, we have shown that LTD (UTD) is con-

temporaneously related with higher (lower) return. To further test the extent that AD is

priced, relative to systematic risk, and to ensure the robustness of our contemporaneous

methodology, we determine whether past estimates of AD affect future return.

We analyze the relationship between past dependence, estimated using the previous

12 months of daily excess returns data, and the average next month excess return using

the Fama and MacBeth (1973) procedure. We do not find significant coefficients attached

to β− or β+, however, we do observe significant coefficients associated with β and JAdj+

(Table 5). The premium attached to JAdj+ is 24.44% of the premium attached to β, which

provides additional support in favor of the contemporaneous relationship between the

AD premium relative to the market risk premium explored in Section 2.6. The coefficient

attached to β is negative (-5.6% pa), however, indicating the existence of a negative ex ante

risk premium, consistent with Boudoukh, Richardson, and Smith (1993) and Eleswarapu

and Thompson (2007).

[Table 5 about here]

Ang, Chen, and Xing (2006) investigate the role played by volatility in measuring the

relationship between past upside and downside β and future return. They argue on the one

hand that high return volatility could lead to less accurate β− estimates thereby reducing

the ability to predict future β−. Alternatively, they suggest a confounding relationship

between β− and stock volatility which is compounded by the possibility that stocks with

very high volatility have extremely low returns, as demonstrated by Ang, Hodrick, Xing,

and Zhang (2006). The remedy for this problem is to consider the relationship between

past dependence and future return, excluding the most volatile stocks.

We investigate the role of volatility on our predictive results following Ang, Chen,

and Xing (2006) by measuring volatility as the standard deviation of excess daily returns
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estimated over the past 12 months. Excluding the top quintile of volatile stocks each month

causes the coefficient attached to β to become insignificant, suggesting that volatility plays

an important role in the β predicability of future return. Furthermore, the coefficient

attached to JAdj+ is now insignificant, but is replaced by a significant JAdj− sensitivity.

Excluding the top decile and the top 5%-tile of volatile stocks only serves to increases the

value of the JAdj− sensitivity and its associated t-statistic. Hence, AD is more important

than linear dependence in forecasting the returns of the least volatile stocks. Across the

entire sample, the importance of tail dependence continues to represent only a fraction of

the importance associated with linear dependence in explaining equity return variation.

4 Conclusion

The aim of this paper is quantify the size of the AD premium relative to the market

risk premium. This investigation is motivated by the need to identify whether the effect

of an apparent tail event on returns reflects compensation for changes in tail dependence

(symmetry) or compensation for changes in systematic risk (linear dependence). To mea-

sure AD, we employ a linear (β) dependence invariant metric, based on the J statistic

originally proposed by Hong, Tu, and Zhou (2007).

We find that the magnitude the premium associated with AD is a substantial fraction

of the premium associated with β, highlighting the importance of accounting for the effect

of changes in both systematic risk and tail dependence on returns. We also find that UTD

is more important, relative to β, than LTD in the cross-section. Both the prevalence and

price of UTD has been increasing in recent years, indicting that investors are valuing

UTD more, while more firms are exhibiting this value-adding characteristic. Over time,

the premium attached to LTD remains relatively constant and has been priced in the

cross-section for a long period. As a result, the market environment in large cap equities

between 2007 and 2009 can be explained in part by changes in systematic risk, but also

by changes in the importance of stocks that display UTD with the market.
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These results have important practical implications, particularly for future endeavours

to manage tail risk. Buyers and sellers of tail risk protection both need to carefully consider

the likely magnitude of systematic risk changes relative to changes in AD. A strategy

that hedges the risk associated with changes in linear dependence may be significantly

different from the strategy an investor might otherwise put in place to manage changes in

tail dependence. By analyzing the magnitude of the sensitivity of returns to AD, relative

to the sensitivity of returns to systematic risk, investors may be able to assess whether

systematic risk hedges are sufficient to mitigate the potential losses associated with tail

dependence.

Our results also have significant implications for a firms cost of capital and the asso-

ciated capital raising decisions. The existence of AD between the firms returns and those

of the market will induce a corresponding discount (UTD) or premium (LTD). Failing

to recognise the influence of AD on the cost of capital is likely to render public capital

offerings either underpriced or undersubscribed. Similarly, capital managers who recog-

nise the value of AD are likely to be able to generate measurable alpha by exploiting the

associated premium. However this alpha is not without risk. In order to identify whether

this alpha is ‘genuine’, suitable AD sensitive performance measures need to be identified

and utilised. Our results also suggest that such measures are unlikely to be based upon

Copula parameters, β or downside β.
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A Data Collection Methodology

Our data collection methodology attempts to follow Ang, Chen, and Xing (2006) in

order to generate comparable results. We use data from the CRSP database, collected

through Wharton Research Data Services (WRDS). Using the daily stock file, we collect

share code, permno, price, holding period return, and number of shares outstanding be-

tween 01 July 1962 and 31 December 2009. For our main analysis, we only include data

for stocks with exchange code (exchcd) equal to 1 (NYSE data).

We use all unique permnos to obtain book value data using the CRSP/COMPUSTAT

Merged database. We collect “Common/Ordinary Equity - Total” (CEQ) data, restricting

our attention to link types “LC” and “LU”. Stocks with multiple company names for a

given permno are excluded. The risk free rate is proxied by the 1 month T-bill rate,

collected from the Kenneth R. French Data Library 14 . The market portfolio is proxied

by the CRSP Value Weighted return of all NYSE, AMEX and NASDAQ stocks.

We calculate the relevant variables for a given month, t, for those stocks with data for

months t − 12 to t + 12, and for those stocks that have a sharecode of 10 or 11 for that

14 We thank Ken French for making this data available.
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period. Holding period returns, rh are converted to continuously compounded returns, rc

by setting rc = log(1 + rh).

Market capitalizations are computed as the absolute value of the product of share price

and total shares outstanding 15 . We use book-values from the previous year whenever the

month at time t is less than 6, and current year book-values whenever the month at time

t is great than or equal to 6. Book-to-market ratio is then computed using current market

cap at time t. Any stock with missing book value data is assigned a BM ratio of zero.

In order to compute excess daily returns, we take the risk free rate at a given month

and divide by the number of days for that month. Regular β, upside and downside β,

realized volatility, coskewness and cokurtosis are then computed according to equation

(B-7) to (B-9) of Ang, Chen, and Xing (2006).

Finally, we compute Pastor and Stambaugh (2003) liquidity β for our NYSE stock

data following the methodology described by Ang, Chen, and Xing (2006, pg. 1236). We

obtain data on the innovation in aggregate liquidity from WRDS.

15 CRSP assigns a negative sign to price in the event that closing price is not available for a given trading day. The bid/ask

average is instead reported on that day.
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Tables and Figures

Factor Correlation

Table 1. This table presents the correlation between each factor. We restrict our attention to stocks

listed on the NYSE between July 1963 and December 2009. At each month, t, we estimate β, β−, β+,

idiosyncratic risk (“Idio”), coskewness (“Cosk”), cokurtosis (“Cokurt”) and JAdj estimated using the

next 12 months of daily excess return data, and size (“Log-size”), book-to-market ratio (“BM”) and the

average past 12-monthly excess return (“Past Ret”) computed as at time t. Returns (“Ret”) are estimated

as the average of the next 12 monthly excess return. We proxy the market portfolio with the CRSP Value

Weighted return of all NYSE, AMEX and NASDAQ stocks and the risk free rate with the 1 month T-bill

rate. All factors are Winsorized at the 1% and 99% level at each month.

β β− β+ Log-size BM Past Ret Idio Cosk Cokurt JAdj Ret

β 1 0.804 0.786 0.101 -0.070 0.177 0.226 -0.017 0.170 0.054 0.068

β− 1 0.515 -0.011 -0.039 0.167 0.229 -0.137 0.144 -0.083 0.099

β+ 1 0.135 -0.063 0.126 0.125 0.111 0.168 0.204 0.016

Log-size 1 -0.312 0.089 -0.296 -0.079 0.142 0.088 -0.077

BM 1 -0.071 0.170 0.059 -0.076 -0.001 0.107

Past Ret 1 -0.081 -0.070 0.050 -0.016 -0.023

Idio 1 0.015 -0.034 -0.003 -0.093

Cosk 1 -0.827 0.260 0.004

Cokurt 1 0.019 -0.033

JAdj 1 -0.136

Ret 1
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The Time Series Average Returns for Double Sorted Portfolios

Table 2. For a given month, we first sort stocks into β deciles, and then into β− or JAdj deciles within

each characteristic decile in Panel A and B respectively. In Panel C and D, we first sort stocks into size or

coskewness deciles respectively, and then into JAdj deciles within each characteristic decile. Dependence

ranges from low (group 1) to high (group 10) which implies that JAdj1 consists of the stocks with high

downside risk and JAdj10 consists of stocks with high upside potential. We record and report the equal

weighted average 12 monthly excess return for all stocks within each group, expressed as an effective

annual rate of return. We restrict our attention to stocks listed on the NYSE between July 1963 and

December 2009. We proxy the market portfolio with the CRSP Value Weighted return of all NYSE,

AMEX and NASDAQ stocks and the risk free rate with the 1 month T-bill rate. We provide the spread

(“Diff”) for each row and column, given by the return associated with the high risk group, less the return

associated with the low risk group. We also include the average return (“Avg”) for each row and column.

Panel A: β/β− Sorted Portfolios

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 Diff Avg

β−
1 0.027 0.010 0.029 0.025 0.010 0.022 0.025 0.030 0.031 0.050 0.023 0.026

β−
2 0.034 0.050 0.043 0.050 0.065 0.065 0.062 0.076 0.065 0.079 0.045 0.059

β−
3 0.040 0.051 0.044 0.064 0.066 0.063 0.070 0.095 0.083 0.110 0.070 0.069

β−
4 0.039 0.052 0.064 0.074 0.071 0.077 0.087 0.094 0.110 0.134 0.094 0.080

β−
5 0.038 0.054 0.062 0.075 0.079 0.076 0.096 0.108 0.104 0.151 0.114 0.084

β−
6 0.042 0.053 0.065 0.078 0.085 0.090 0.099 0.121 0.119 0.176 0.133 0.093

β−
7 0.048 0.052 0.067 0.078 0.084 0.096 0.101 0.122 0.123 0.171 0.123 0.094

β−
8 0.041 0.049 0.070 0.081 0.094 0.102 0.113 0.121 0.137 0.232 0.191 0.104

β−
9 0.048 0.058 0.078 0.089 0.099 0.112 0.126 0.113 0.156 0.240 0.191 0.112

β−
10 0.029 0.085 0.085 0.092 0.108 0.120 0.110 0.119 0.159 0.214 0.185 0.112

Diff 0.002 0.075 0.056 0.067 0.098 0.098 0.085 0.088 0.128 0.165

Avg 0.039 0.051 0.061 0.071 0.076 0.082 0.089 0.100 0.109 0.156

Panel B: β/JAdj Sorted Portfolios

β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 Diff Avg

JAdj1 0.089 0.114 0.116 0.124 0.132 0.128 0.150 0.159 0.175 0.281 0.192 0.147

JAdj2 0.071 0.094 0.100 0.110 0.123 0.129 0.132 0.139 0.170 0.220 0.149 0.129

JAdj3 0.059 0.076 0.089 0.099 0.107 0.112 0.116 0.136 0.138 0.203 0.144 0.114

JAdj4 0.050 0.078 0.087 0.097 0.093 0.107 0.104 0.123 0.144 0.195 0.145 0.108

JAdj5 0.050 0.063 0.073 0.089 0.093 0.107 0.106 0.120 0.122 0.188 0.139 0.101

JAdj6 0.038 0.045 0.058 0.068 0.079 0.080 0.089 0.106 0.118 0.156 0.118 0.084

JAdj7 0.030 0.033 0.048 0.054 0.067 0.076 0.081 0.085 0.088 0.134 0.104 0.070

JAdj8 0.014 0.030 0.036 0.047 0.042 0.049 0.066 0.061 0.064 0.090 0.076 0.050

JAdj9 0.006 0.005 0.021 0.023 0.032 0.042 0.041 0.055 0.054 0.072 0.066 0.035

JAdj10 -0.017 -0.019 -0.015 0.000 -0.004 -0.002 0.008 0.017 0.018 0.025 0.041 0.001

Diff 0.105 0.134 0.130 0.124 0.135 0.130 0.142 0.142 0.157 0.256

Avg 0.039 0.052 0.061 0.071 0.076 0.083 0.089 0.100 0.109 0.156
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The Time Series Average Returns for Double Sorted Portfolios Continued

Table 2. Continued.

Panel C: Size/JAdj Sorted Portfolios

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 Diff Avg

JAdj1 0.246 0.151 0.183 0.154 0.141 0.123 0.108 0.109 0.095 0.068 0.178 0.138

JAdj2 0.228 0.132 0.159 0.149 0.116 0.102 0.108 0.094 0.078 0.066 0.162 0.123

JAdj3 0.197 0.135 0.142 0.132 0.103 0.114 0.101 0.092 0.079 0.066 0.131 0.116

JAdj4 0.159 0.119 0.135 0.105 0.102 0.096 0.089 0.093 0.075 0.062 0.097 0.104

JAdj5 0.167 0.108 0.122 0.096 0.089 0.096 0.082 0.085 0.067 0.055 0.111 0.097

JAdj6 0.155 0.104 0.101 0.097 0.082 0.092 0.082 0.074 0.072 0.053 0.101 0.091

JAdj7 0.118 0.078 0.093 0.064 0.063 0.073 0.071 0.060 0.047 0.040 0.078 0.071

JAdj8 0.097 0.039 0.065 0.063 0.057 0.065 0.058 0.054 0.045 0.025 0.072 0.057

JAdj9 0.043 0.022 0.046 0.041 0.045 0.038 0.041 0.047 0.031 0.013 0.031 0.037

JAdj10 0.001 -0.019 -0.004 0.000 0.008 0.005 0.011 0.012 0.014 -0.001 0.002 0.003

Diff 0.245 0.169 0.186 0.154 0.133 0.118 0.097 0.097 0.081 0.070

Avg 0.141 0.087 0.104 0.090 0.081 0.080 0.075 0.072 0.060 0.045

Panel D: Coskewness/JAdj Sorted Portfolios

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Diff Avg

JAdj1 0.183 0.192 0.169 0.161 0.159 0.139 0.113 0.091 0.088 0.073 0.110 0.137

JAdj2 0.168 0.176 0.154 0.148 0.127 0.114 0.104 0.084 0.077 0.051 0.118 0.120

JAdj3 0.165 0.167 0.141 0.131 0.109 0.105 0.092 0.077 0.051 0.044 0.121 0.108

JAdj4 0.153 0.144 0.132 0.129 0.097 0.108 0.088 0.071 0.052 0.035 0.118 0.101

JAdj5 0.149 0.140 0.131 0.110 0.092 0.091 0.089 0.058 0.035 0.011 0.138 0.091

JAdj6 0.143 0.138 0.128 0.118 0.094 0.085 0.069 0.042 0.031 0.020 0.123 0.087

JAdj7 0.123 0.130 0.113 0.094 0.073 0.061 0.053 0.037 0.027 0.012 0.111 0.072

JAdj8 0.123 0.121 0.095 0.079 0.064 0.053 0.041 0.031 0.013 -0.005 0.128 0.062

JAdj9 0.094 0.103 0.073 0.068 0.041 0.032 0.036 0.022 -0.004 -0.008 0.102 0.046

JAdj10 0.045 0.056 0.039 0.029 0.014 0.014 0.001 -0.006 -0.014 -0.040 0.085 0.014

Diff 0.139 0.136 0.130 0.132 0.146 0.124 0.112 0.097 0.102 0.113

Avg 0.135 0.137 0.118 0.107 0.087 0.080 0.069 0.051 0.036 0.019
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Fama and MacBeth (1973) Regressions (1963-2009)

Table 3. We measure risk premia using the Fama and MacBeth (1973) asset pricing procedure where

cross-sectional regressions are computed every month rolling forward. At a given month, t, the average of

the next 12 excess monthly returns is regressed against β, β−, β+, idiosyncratic risk (“Idio”), coskewness

(“Cosk”), cokurtosis (“Cokurt”) and JAdj estimated using the next 12 months of daily excess return data,

and size (“Log-size”), book-to-market ratio (“BM”) and the average past 12-monthly excess return (“Past

Ret”), computed as at time t. We proxy the market portfolio with the CRSP Value Weighted return of

all NYSE, AMEX and NASDAQ stocks and the risk free rate with the 1 month T-bill rate. All regressors

are Winsorized at the 1% and 99% level at each month. We restrict our attention to stocks listed on

the NYSE between July 1963 and December 2009. Statistical significance is determined using Newey and

West (1987) adjusted t-statistics, given in parentheses, to control for overlapping data using the Newey

and West (1994) automatic lag selection method to determine the lag length. The mean and standard

deviation (in parentheses) for each variable is provided at the last column. All coefficients are reported

as effective annual rates.

I II III IV V mean

(std)

Int 0.351 0.029 0.325 0.328 0.303

[4.69] [1.70] [4.60] [4.56] [4.33]

β 0.133 0.128 0.129 0.901

[3.81] [3.74] [3.73] (0.517)

β− 0.080 0.127 0.970

[4.31] [4.37] (0.635)

β+ -0.028 -0.043 0.846

[2.60] [2.51] (0.680)

Log-size -0.038 -0.037 -0.037 -0.033 5.946

[5.07] [5.04] [5.06] [4.85] (1.799)

BM 0.019 0.019 0.019 0.018 0.769

[2.52] [2.49] [2.48] [2.38] (0.663)

Past Ret -0.015 -0.012 -0.012 -0.007 0.147

[1.21] [0.97] [0.95] [0.58] (0.440)

Idio -0.356 -0.349 -0.349 -0.316 0.341

[3.68] [3.64] [3.65] [3.34] (0.185)

Cosk -0.191 -0.071 -0.068 0.332 -0.125

[4.90] [2.60] [2.51] [3.98] (0.426)

Cokurt 0.018 0.024 0.023 0.047 2.195

[1.35] [1.85] [1.80] [3.49] (4.087)

JAdj -0.006 -2.127

[5.25] (6.180)

JAdj− -0.006 -0.008 -5.757

[4.65] [5.02] (3.4113)

JAdj+ -0.009 -0.009 5.362

[3.83] [3.96] (3.1164)
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(a) Asymmetric Dependence (b) Symmetric Dependence

Fig. 1. Linear vs Asymmetric Dependence. Scatter plot of simulated bivariate data with asymmetric

dependence (a) and symmetric dependence (b). The dependence between X and Y may be described

by a linear component and a higher order reflecting differences in dependence across the joint return

distribution. A joint distribution that displays larger dependence in one tail compared to the opposite

tail is said to display asymmetric dependence.
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(a) CAPM Beta est’s for α = 0,
β ∈ (−0.75, 0.75).
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(b) CAPM Beta est’s for β = 1,
α ∈ (−0.75, 0.75).
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(c) CAPM Beta est’s for α =
0.5, β ∈ (−0.75, 0.75).
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(d) Downside Beta est’s for α =
0, β ∈ (−0.75, 0.75).
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(e) Downside Beta est’s for β =
1, α ∈ (−0.75, 0.75).
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(f) Downside Beta est’s for α =
0.5, β ∈ (−0.75, 0.75).
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(g) Clayton copula parame-
ter est’s for α = 0, β ∈
(−0.75, 0.75).
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(h) Clayton copula parame-
ter est’s for β = 1, α ∈
(−0.75, 0.75).
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(i) Clayton copula parameter
est’s for α = 0.5, β ∈
(−0.75, 0.75).

Fig. 2. Estimates of linear dependence and AD. We estimate the CAPM Beta, downside Beta and the

Clayton copula parameter using N = 10000 simulated pairs of data (x, y), where yi = βxi + εi, with

xi ∼ N(0.25, 0.15) and εi ∼ N(0, (xi + 0.25)α). Higher levels of linear dependence are incorporated with

higher values of β and higher levels of lower tail dependence are incorporated with higher levels of α.

Figures (a), (d) and (g) provide estimates for varying levels of linear dependence but with no AD (α = 0).

Figures (b), (e) and (h) provide estimates for varying degrees of AD, with constant linear dependence

(β = 1). Figures (c), (f) and (i) provide estimates for varying degrees of linear dependence, with constant

AD (α = 0.5).
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(a) J est’s for α = 0, β ∈
(−0.75, 0.75).
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(b) J est’s for β = 1, α ∈
(−0.75, 0.75).
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(c) J est’s for α = 0.5, β ∈
(−0.75, 0.75).
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(d) Adjusted J est’s for α = 0,
β ∈ (−0.75, 0.75).
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(e) Adjusted J est’s for β = 1,
α ∈ (−0.75, 0.75).
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(f) Adjusted J est’s for α = 0.5,
β ∈ (−0.75, 0.75).

Fig. 3. Estimates of linear dependence and AD. We estimate the J statistic Hong, Tu, and Zhou (2006)

and Adjusted-J statistic using N = 10000 simulated pairs of data (x, y), where yi = βxi + εi, with

xi ∼ N(0.25, 0.15) and εi ∼ N(0, (xi + 0.25)α). Higher levels of linear dependence are incorporated with

higher values of β and higher levels of lower tail dependence are incorporated with higher levels of α.

Figures (a) and (d) provide estimates for varying levels of linear dependence but with no AD (α = 0).

Figures (b) and (e) provide estimates for varying degrees of AD, with constant linear dependence (β = 1).

Figures (c) and (f) provide estimates for varying degrees of linear dependence, with constant AD (α = 0.5).
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(c) Standardization

−3 −2 −1 0 1 2 3
−8

−6

−4

−2

0

2

4

6

8

R
m

R
i

(d) Second Transformation

Fig. 4. JAdj Data Transformations. To calculated JAdj , statistic, we first take random samples,

{Rit, Rmt}Tt=1, as in (a) and let R̂it = Rit − βRmt where Rit is the continuously compounded return

on the ith asset, Rmt is the continuously compounded return on the market and β = cov(Rit, Rmt)/σ
2
Rmt

.

This transformation forces βR̂it,Rmt
= 0, as in (b). We standardize the transformed data yielding RSmt

and R̂Sit in (c). Finally, were-transform the data to have β̂ = 1 by letting R̃mt = RSmt and R̃it = R̂Sit+RSmt

in (d). The solid line through the middle of each plot is given to illustrate how the linear trend changes

with each transformation.
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Fig. 5. Our monthly sample size. We restrict our attention to stocks listed on the NYSE between July

1963 and December 2009.

46



−60 −40 −20 0 20 40
0

2000

4000

6000

8000

J
Adj

N
u
m

b
e
r

(a) Actual Distribution

−60 −40 −20 0 20 40
0

2000

4000

6000

8000

J
Adj

N
u
m

b
e
r

(b) Distribution Under Normality

Fig. 6. Actual and Hypothetical Distribution of the JAdj . We focus on stocks listed on the NYSE between

July 1963 and December 2009. At a given month, t, we estimate JAdj using the next 12 months of daily

excess return data. We proxy the market portfolio with the CRSP Value Weighted return of all NYSE,

AMEX and NASDAQ stocks and the risk free rate with the 1 month T-bill rate. The histogram of all

JAdj observations is presented in (a). We include the distribution of the JAdj computed using simulated

multivariate normal data, parameterized at each month in (b). The size of each sample is chosen to match

the number of days in each 12 month period. The vertical lines represent 95% cut-offs following a χ2
6

distribution. A positive (negative) JAdj is indicative of excess upside (downside) risk over and above the

tail risk implied by ordinary β.
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Fig. 7. This figure depicts the median factor loading for β, JAdj− and JAdj+ at a given month, t, between

January 1989 and January 2009 using the next 12 months of daily excess returns. We proxy the market

portfolio with the CRSP Value Weighted return of all NYSE, AMEX and NASDAQ stocks and the risk

free rate with the 1 month T-bill rate. The estimate is calculated using all historical data up to and

including time t.
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Fig. 8. This figure depicts the factor sensitivity using the Fama and MacBeth (1973) asset pricing pro-

cedure where cross-sectional regressions are computed every month rolling forward. At a given month, t,

the average of the next 12 excess monthly returns is regressed against β, idiosyncratic risk, coskewness,

cokurtosis, JAdj− and JAdj+ estimated using the next 12 months of daily excess return data, and size

(“Log-size”), book-to-market ratio (“BM”) and the average past 12-monthly excess return (“Past Ret”),

computed as at time t. We proxy the market portfolio with the CRSP Value Weighted return of all

NYSE, AMEX and NASDAQ stocks and the risk free rate with the 1 month T-bill rate. All regressors

are Winsorized at the 1% and 99% level at each month. We restrict our attention to stocks listed on the

NYSE between July 1963 and December 2009. The “Premium” for β and for JAdj− and the “Discount”

for JAdj+ between January 1989 and January 2009 is given by the time series median factor sensitivity

using all historical sensitivity estimates up to and including time t.
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