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Risk and Pricing

» A key question in Mathematical Finance is:
Given a future random payoff X, what are you willing to
pay today for X ?

» One could also ask “How risky is X ?”

» Various attempts have been made to answer this question.
(Expected utility, CAPM, Convex Risk Measures, etc...)

» While giving an axiomatic approach to answering this

question, we shall outline the theory of “Backward
Stochastic Difference Equations.”
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L Dynamic Nonlinear Expectations

Nonlinear Expectations

For some terminal time T, we define an ‘F;-consistent
nonlinear expectation’ £ to be a family of operators

EC|F) : LB(Fr) = L2(F)t< T

with
1. (Monotonicity) If Q' > Q? P-a.s.,

E(Q'|F) > E(QP|F)
2. (Constants) For all 7;-measurable Q,

£QF)=Q
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Nonlinear Expectations

3. (Recursivity) For s < t,

E(E(QIF)|Fs) = £(QIFs)
4. (Zero-One law) For any A € F;,

E(IaQ|Ft) = 14E(Q|Fy).
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LDynamic Nonlinear Expectations

Nonlinear Expectations

Two other properties are desirable
5. (Translation invariance) For any g € L?(F}),

E(Q+q|Ft) =E(Q|F) +q.
6. (Concavity) For any X € [0, 1],

EQQ" + (1 = N@PF) > M(QF) + (1 = NE(QA|F)
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L Dynamic Nonlinear Expectations

Nonlinear Expectations

There is a relation between nonlinear expectations and convex
risk measures:

» If (1)-(6) are satisfied, then for each t,
pt(X) == —E(X|F)

defines a dynamic convex risk measure. These risk
measures are time consistent.

» For simplicity, this presentation will discuss nonlinear
expectations.

» How could we construct such a family of operators? g unesm
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L Discrete BSDEs

» In this presentation, we shall consider discrete time
processes satisfying ‘Backward Stochastic Difference
Equations’.

» These are the natural extension of Backward Stochastic
Differential Equations in continuous time.

» We shall see that every nonlinear expectation satisfying
Axioms (1-5) solves a BSDE with certain properties, and
conversely.

» We also establish necessary and sufficient conditions for
concavity (Axiom 6).

» To do this, we first need to set up our probability space.
A\ A
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L Discrete BSDEs

A probabilistic setting

» Let X be a discrete time, finite state process. Without loss
of generality, X takes values from the unit vectors in RV.

» Let {F:} be the filtration generated by X, that is F; consists
of every event that can be known from watching X up to
time .

» Let My = X; — E[X¢|F;-1]. Then M is a martingale
difference process, that is E[M;|F;_1] = 0 € RV,
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L Discrete BSDEs

Discrete BSDEs (‘D=Difference’)

A BSDE is an equation of the form:

Yt_ Z F(W, U) YUazU)+ Z ZUMU+1 = Q

t<u<T t<u<T

» Q is the terminal condition (in R)

» Fis a (stochastic) ‘driver’ function, with F(w, u, -, -) known
at time u.

» A solution is an adapted pair (Y, Z) of processes, Y; € R
and Z; € RVx1,

» All quantities are assumed to be P-a.s. finite. DR e LuvERSITY
‘lﬁi%’ AUSTRAUA
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Discrete BSDEs (‘D=Difference’)

Equivalently, we can write this in a differenced form:
Yi — Fw,t, Y, Zt) + ZiMiq = Yiq

with terminal condition
Yr=Q.

The important detail is that

» The terminal condition is fixed, and the dynamics are given
in reverse.

» The solution (Y, Z) is adapted, that is, at time t it depends
only on what has happened up to time t. 5?2§Q{X$§§”V

AUS|



A General Theory of Backward Stochastic Difference Equations
L Discrete BSDEs
L Binomial Pricing

A Special Case: Binomial Pricing

» Suppose we have a market with two assets: a stock Y
following a simple binomial price process, and a risk free
Bond B.

» Let r; denote the one-step interest rate at time .

» From each time t, there are two possible states for the
stock price the following day, Y(t+1,7)and Y(t+1,]).

» Suppose these two states occur with (real world)
probabilities p and 1 — p respectively.
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L Binomial Pricing

It is easy to show that there exists a unique ‘no-arbitrage’ price
1

Y(t) = T [rY(t+1,1))+ (1 —m)Y(t+1,])]
1
:me[Y(t+1)|ft]-

Here 7 the ‘risk-neutral probability’, that is, the price today is
the average discounted price tomorrow; when = is the
probability of a price increase.
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Writing Y; = Y(t) etc... we also know,

Yir1 = Ep(Yir1]|Ft) + Lit

where Ep(Yi11|Ft) is the (real-world) conditional mean value of
Yi+1, and Ly; 1 is a random variable with conditional mean value
zero

(Lts1 = Yir1 — Ep(Yes1lF1))-
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L Binomial Pricing

In the notation we established before, we can define a
martingale difference process M

W= | 328 [ mest=| P

And it is easy to show that L;,4 can be written as Z;M;, 1, for
some row vector Z; known at time t. (Doob-Dynkin Lemma)
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We can then do some basic algebra:

Yir1 = Ep(Yie1|Ft) + Lt
=Ye+nYr— (1 +nr)Ye+ Ep(Yig1|Ft) + LMy

=Yi+nYi—(1+n) Ex(Yir1lFt) + Ep(Yeet|Ft) + ZtMyi

’
1+ I
=Y+ n1Ye — Ex(Yig1 — Ep(Yi1)Ft) + ZtMiy 4
= Yt + 1Y — Ex(Leg1|Ft) + ZeMi g

=Y — | — Y+ ZE.(Mipq|Fr) | + ZtMi
Y, — F(Y+, Z) + ZiMys
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So our one-step pricing formula is equivalent to the equation
Yirr = Yi— F(Yt, Zt) + ZtMy i
where
F(Yt, Zt) = =1 Yt + ZtEr (Mg 1| Ft)

=—fth+Zt[;:f:]

This is a special case of a BSDE.
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L Existence & Uniqueness

Before giving general existence properties of BSDEs, we need
the following.

Definition
If Z) My, 1 = Z2M; 4 P-a.s. for all t, then we write Z1 ~, Z2.
Note this is an equivalence relation for Z; ¢ RN*1,

Theorem
For any F;,1-measurable random variable W € R with
E[W|F;] = 0, there exists a F;-measurable Z; ¢ RN*" with

W= 2ZiM; 4.
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LExistence & Uniqueness

An Existence Theorem

Theorem
Suppose

(i) F(w,t, Yt Z) is invariant under equivalence ~
(iiy For all Z;, the map

Yi— Yi— F(w,t, Y1, Z4)

is a bijection

Then a BSDE with driver F has a unique solution in L.

Corollary
These conditions are necessary and sufficient.
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L Existence & Uniqueness

Proof:

Let Z; € RN*1 solve
ZiMi1 = Yipr — E[Ye|F]
Then let Y; € R solve
Yi — F(w, t, Y, Zt) = E[Yi1]Fi]

for the above value of Z;.
Then (Y}, Z;) solves the one step equation

Yi— Flw, t, Y1, Zt) + ZtMyy 1 = Yia,

-
and the result follows by backwards induction.
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L A Comparison Theorem

» We wish to ensure that, when Q' > Q?, the corresponding
values Y{ > Y? for all t.

» This will, (eventually), allow us to define a nonlinear
expectation £ and obtain the monotonicity and concavity
assumptions.

» The key theorem here is the Comparison Theorem

Definition
We define J;, the set of possible jumps of X from time f to time
t+1, by

Jt = {I : P(XH_-] = e/’ft) > 0)}
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L A Comparison Theorem

Comparison Theorem

Theorem
Consider two BSDEs with drivers F', F2, terminal values
Q', @?, etc... Suppose that, P-a.s. for all t,
i Q'>@?
(i) Fl'(w,t, Y2, Z2) > F?(w, t, Y2, Z2)
(i) Fl'(w,t, Y2, Z!") — F'(w, t, Y2, Z2)
> minjes, {(Z! — Z?)(ej — E[Xe1|74])}-

(iv) The map Y;— Y — F(w, t, Y1, Z}') is strictly increasing in
Y;.

Then Yg > Yt2 P-a.s. for all t. LEJ E?E\EQ‘{XES?W
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L A Comparison Theorem

Proof:

1 2
Assume Y/ ; — Y,

i1 = 0, then, omitting w and t,

Y] - Y2 - F(Y],ZY+ FY(Y2 Z)

—[FY (Y2, Z)) - F' (YR, ZD) + (Z] — ZB)Misq
=[Yi1 = YR+ [F (YR, ZB) — FA(YE, ZP)]
>0.

This must hold P-a.s., so it holds under taking the
Fi-conditional essential minimum of all terms. Hence

Y] - YE-FY(Y,Z)+ FY (Y2, Zl)>0

Pl THE UNIVERSITY
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the result follows by induction.
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L Discrete BSDEs

LBSDEs and Nonlinear Expectations

» Given this theory, we can now construct explicit examples
of nonlinear expectations.

» In fact, every nonlinear expectation can be constructed this
way.
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BSDEs and Nonlinear Expectations

Theorem
The following statements are equivalent:

(i) E(-|F) is an Fi-consistent, translation invariant nonlinear
expectation. (Axioms 1-5)

(i) There is an F such that Y; = £(Q|F;) solves a BSDE with
driver F and terminal condition Q, where F satisfies the
conditions of the comparison theorem, is independent of
Yi, and F(w, t, Y;,0) = 0 P-a.s. for all t.

In this case,
F(w, t, Yt, Zt) = S(ZI‘MI-H |ft)
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Corollary
The nonlinear expectation £(-|Ft) has property “..." if and only if
F has property “..." (in Z), where "..." is any of:

» Concavity

» Positive homogeneity

» Linearity

» [nvariance under addition of martingale terms orthogonal
to a given process
(Lipshitz) continuity (in L' norm)
> elc...

v

Note, these statements are trivial, given the equivalence

o
D)) Sns
F(w, [ Yt, Zt) = S(ZtMt+1 |—7:t)
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» The proof of this is simple, but long.

» This result holds for both scalar and vector valued
nonlinear expectations.

» Similar results have been obtained for the scalar Brownian
Case, (Coquet et al, 2002), (Hu et al, 2008).

» In discrete time everything is simpler, and one can even
obtain similar results for the more general nonlinear
evaluations (Cohen & Elliott, forthcoming)
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An Example

To demonstrate the complexity that can be achieved, consider a
two step world where X; takes one of two values with equal
probability.

Assume that Z; is written in the form Z; = [z, —Zz], which is
unique up to equivalence ~ ;. We consider the concave
function

F(w,t, Yy, Z) = Wemno.gl{z(w —0.5)z + (7 — 0.5)?},

where ~ is a ‘risk aversion’ parameter (the smaller the value of
v, the more risk averse), which we shall set to Y= 10. THEUVE\III-\A:ES?ITY
e
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Other Results:

» One can show under what conditions a generic monotone
map L2(F7) — R can be extended to an F; consistent
nonlinear expectation.

» It is also possible, in general, to determine under what
conditions the driver F can be determined from the
solutions Y;, even when the comparison theorem and
normalisation conditions do not hold.

» These results are significantly stronger than available in

continuous time.
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LConclusions

Conclusions

» The theory of BSDEs can be expressed in discrete time.

» Various continuous time results, such as the comparison
theorem, extend naturally to the discrete setting.

» The discrete time proofs are often simpler than in
continuous time, and give stronger results.

» It forms a natural setting for nonlinear expectations, as
every nonlinear expectation solves a BSDE.

» This has various implications for problems in economic
regulation, and in other areas of optimal stochastic control.
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