Samuel N. Cohen and Robert J. Elliott

University of Adelaide and University of Calgary

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

Dynamic Nonlinear Expectations

Discrete BSDEs

Binomial Pricing Existence & Uniqueness A Comparison Theorem BSDEs and Nonlinear Expectations

Conclusions

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Risk and Pricing

- A key question in Mathematical Finance is: Given a future random payoff X, what are you willing to pay today for X?
- One could also ask "How risky is X?"
- Various attempts have been made to answer this question. (Expected utility, CAPM, Convex Risk Measures, etc...)
- While giving an axiomatic approach to answering this question, we shall outline the theory of "Backward Stochastic Difference Equations."

Dynamic Nonlinear Expectations

Nonlinear Expectations

For some terminal time T, we define an ' \mathcal{F}_t -consistent nonlinear expectation' \mathcal{E} to be a family of operators

$$\mathcal{E}(\cdot|\mathcal{F}_t): L^2(\mathcal{F}_T) \to L^2(\mathcal{F}_t); t \leq T$$

with

1. (Monotonicity) If $Q^1 \ge Q^2 \mathbb{P}$ -a.s.,

$$\mathcal{E}(\boldsymbol{Q}^1|\mathcal{F}_t) \geq \mathcal{E}(\boldsymbol{Q}^2|\mathcal{F}_t)$$

2. (Constants) For all \mathcal{F}_t -measurable Q,

$$\mathcal{E}(Q|\mathcal{F}_t) = Q$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Dynamic Nonlinear Expectations

Nonlinear Expectations

3. (Recursivity) For
$$s \leq t$$
,

$$\mathcal{E}(\mathcal{E}(\mathcal{Q}|\mathcal{F}_t)|\mathcal{F}_s) = \mathcal{E}(\mathcal{Q}|\mathcal{F}_s)$$

4. (Zero-One law) For any $A \in \mathcal{F}_t$,

$$\mathcal{E}(I_A Q | \mathcal{F}_t) = I_A \mathcal{E}(Q | \mathcal{F}_t).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Dynamic Nonlinear Expectations

Nonlinear Expectations

Two other properties are desirable

5. (Translation invariance) For any $q \in L^2(\mathcal{F}_t)$,

$$\mathcal{E}(Q+q|\mathcal{F}_t)=\mathcal{E}(Q|\mathcal{F}_t)+q.$$

- 6. (Concavity) For any $\lambda \in [0, 1]$,
 - $\mathcal{E}(\lambda Q^{1} + (1 \lambda)Q^{2}|\mathcal{F}_{t}) \geq \lambda \mathcal{E}(Q^{1}|\mathcal{F}_{t}) + (1 \lambda)\mathcal{E}(Q^{2}|\mathcal{F}_{t})$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Dynamic Nonlinear Expectations

Nonlinear Expectations

There is a relation between nonlinear expectations and convex risk measures:

• If (1)-(6) are satisfied, then for each t,

$$\rho_t(\boldsymbol{X}) := -\mathcal{E}(\boldsymbol{X}|\mathcal{F}_t)$$

defines a dynamic convex risk measure. These risk measures are *time consistent*.

- For simplicity, this presentation will discuss nonlinear expectations.
- How could we construct such a family of operators?

A General Theory of Backward Stochastic Difference Equations

- In this presentation, we shall consider discrete time processes satisfying 'Backward Stochastic Difference Equations'.
- These are the natural extension of Backward Stochastic Differential Equations in continuous time.
- We shall see that every nonlinear expectation satisfying Axioms (1-5) solves a BSDE with certain properties, and conversely.
- We also establish necessary and sufficient conditions for concavity (Axiom 6).
- To do this, we first need to set up our probability space.

▲口 > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ >

- Discrete BSDEs

A probabilistic setting

- Let X be a discrete time, finite state process. Without loss of generality, X takes values from the unit vectors in ℝ^N.
- ► Let {*F_t*} be the filtration generated by *X*, that is *F_t* consists of every event that can be known from watching *X* up to time *t*.
- ► Let $M_t = X_t E[X_t | \mathcal{F}_{t-1}]$. Then M is a martingale difference process, that is $E[M_t | \mathcal{F}_{t-1}] = \mathbf{0} \in \mathbb{R}^N$.

(日) (日) (日) (日) (日) (日) (日)

Discrete BSDEs ('D=Difference')

A BSDE is an equation of the form:

$$Y_t - \sum_{t \leq u < T} F(\omega, u, Y_u, Z_u) + \sum_{t \leq u < T} Z_u M_{u+1} = Q$$

- Q is the terminal condition (in \mathbb{R})
- F is a (stochastic) 'driver' function, with F(ω, u, ·, ·) known at time u.
- A solution is an adapted pair (Y, Z) of processes, Y_t ∈ ℝ and Z_t ∈ ℝ^{N×1}.
- ▶ All quantities are assumed to be P-a.s. finite.

Discrete BSDEs ('D=Difference')

Equivalently, we can write this in a differenced form:

$$Y_t - F(\omega, t, Y_t, Z_t) + Z_t M_{t+1} = Y_{t+1}$$

with terminal condition

$$Y_T = Q.$$

The important detail is that

- The terminal condition is fixed, and the dynamics are given in reverse.
- The solution (Y,Z) is adapted, that is, at time t it depends only on what has happened up to time t.

- Discrete BSDEs

-Binomial Pricing

A Special Case: Binomial Pricing

- Suppose we have a market with two assets: a stock Y following a simple binomial price process, and a risk free Bond B.
- Let r_t denote the one-step interest rate at time t.
- From each time t, there are two possible states for the stock price the following day, Y(t + 1, ↑) and Y(t + 1, ↓).
- Suppose these two states occur with (real world) probabilities p and 1 p respectively.

-Binomial Pricing

It is easy to show that there exists a unique 'no-arbitrage' price

$$Y(t) = \frac{1}{1+r_t} \left[\pi Y(t+1,\uparrow) + (1-\pi) Y(t+1,\downarrow) \right]$$

= $\frac{1}{1+r_t} E_{\pi} [Y(t+1)|\mathcal{F}_t].$

Here π the 'risk-neutral probability', that is, the price today is the average discounted price tomorrow; when π is the probability of a price increase.

THE UNIVERSITY OF ADELAIDE AUSTRALIA

-Binomial Pricing

Writing $Y_t = Y(t)$ etc... we also know,

$$Y_{t+1} = E_{p}(Y_{t+1}|\mathcal{F}_{t}) + L_{t+1}$$

where $E_p(Y_{t+1}|\mathcal{F}_t)$ is the (real-world) conditional mean value of Y_{t+1} , and L_{t+1} is a random variable with conditional mean value zero

$$(L_{t+1} = Y_{t+1} - E_{\rho}(Y_{t+1}|\mathcal{F}_t)).$$

-Binomial Pricing

In the notation we established before, we can define a martingale difference process M

$$M_{t+1}(\uparrow) = \left[egin{array}{c} 1-p \ p-1 \end{array}
ight], M_{t+1}(\downarrow) = \left[egin{array}{c} -p \ p \end{array}
ight].$$

And it is easy to show that L_{t+1} can be written as $Z_t M_{t+1}$, for some row vector Z_t known at time *t*. (Doob-Dynkin Lemma)

A General Theory of Backward Stochastic Difference Equations

-Binomial Pricing

We can then do some basic algebra:

$$\begin{aligned} Y_{t+1} &= E_{\rho}(Y_{t+1}|\mathcal{F}_{t}) + L_{t+1} \\ &= Y_{t} + r_{t}Y_{t} - (1 + r_{t})Y_{t} + E_{\rho}(Y_{t+1}|\mathcal{F}_{t}) + Z_{t}M_{t+1} \\ &= Y_{t} + r_{t}Y_{t} - (1 + r_{t})\frac{1}{1 + r_{t}}E_{\pi}(Y_{t+1}|\mathcal{F}_{t}) + E_{\rho}(Y_{t+1}|\mathcal{F}_{t}) + Z_{t}M_{t+1} \\ &= Y_{t} + r_{t}Y_{t} - E_{\pi}(Y_{t+1} - E_{\rho}(Y_{t+1})|\mathcal{F}_{t}) + Z_{t}M_{t+1} \\ &= Y_{t} + r_{t}Y_{t} - E_{\pi}(L_{t+1}|\mathcal{F}_{t}) + Z_{t}M_{t+1} \\ &= Y_{t} - \left[-r_{t}Y_{t} + Z_{t}E_{\pi}(M_{t+1}|\mathcal{F}_{t}) \right] + Z_{t}M_{t+1} \\ &= Y_{t} - F(Y_{t}, Z_{t}) + Z_{t}M_{t+1} \end{aligned}$$

₹ 9Q@

ヘロト 人間 とくほとくほとう

-Binomial Pricing

So our one-step pricing formula is equivalent to the equation

$$Y_{t+1} = Y_t - F(Y_t, Z_t) + Z_t M_{t+1}$$

where

$$F(Y_t, Z_t) = -r_t Y_t + Z_t E_{\pi}(M_{t+1}|\mathcal{F}_t)$$
$$= -r_t Y_t + Z_t \begin{bmatrix} \pi - \rho \\ \rho - \pi \end{bmatrix}$$

This is a special case of a BSDE.

- Existence & Uniqueness

Before giving general existence properties of BSDEs, we need the following.

Definition

If $Z_t^1 M_{t+1} = Z_t^2 M_{t+1}$ \mathbb{P} -a.s. for all t, then we write $Z^1 \sim_M Z^2$. Note this is an equivalence relation for $Z_t \in \mathbb{R}^{N \times 1}$.

Theorem

For any \mathcal{F}_{t+1} -measurable random variable $W \in \mathbb{R}$ with $E[W|\mathcal{F}_t] = 0$, there exists a \mathcal{F}_t -measurable $Z_t \in \mathbb{R}^{N \times 1}$ with

$$W=Z_tM_{t+1}.$$

- Discrete BSDEs

Existence & Uniqueness

An Existence Theorem

Theorem Suppose (i) $F(\omega, t, Y_t, Z_t)$ is invariant under equivalence \sim_M (ii) For all Z_t , the map

$$Y_t \mapsto Y_t - F(\omega, t, Y_t, Z_t)$$

is a bijection

Then a BSDE with driver F has a unique solution in L^1 .

Corollary

These conditions are necessary and sufficient.

- Discrete BSDEs

- Existence & Uniqueness

Proof:

Let
$$Z_t \in \mathbb{R}^{N imes 1}$$
 solve

$$Z_t M_{t+1} = Y_{t+1} - E[Y_{t+1}|\mathcal{F}_t].$$

Then let $Y_t \in \mathbb{R}$ solve

$$Y_t - F(\omega, t, Y_t, Z_t) = E[Y_{t+1}|\mathcal{F}_t]$$

for the above value of Z_t . Then (Y_t, Z_t) solves the one step equation

$$Y_t - F(\omega, t, Y_t, Z_t) + Z_t M_{t+1} = Y_{t+1},$$

and the result follows by backwards induction.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A General Theory of Backward Stochastic Difference Equations

A Comparison Theorem

- We wish to ensure that, when Q¹ ≥ Q², the corresponding values Y¹_t ≥ Y²_t for all t.
- This will, (eventually), allow us to define a nonlinear expectation *E* and obtain the monotonicity and concavity assumptions.
- ► The key theorem here is the Comparison Theorem

Definition

We define \mathbb{J}_t , the set of possible jumps of X from time t to time t + 1, by

$$\mathbb{J}_t := \{i : \mathbb{P}(X_{t+1} = \boldsymbol{e}_i | \mathcal{F}_t) > \mathbf{0})\}.$$

- Discrete BSDEs

A Comparison Theorem

Comparison Theorem

Theorem Consider two BSDEs with drivers F¹, F², terminal values Q^1, Q^2 , etc... Suppose that, \mathbb{P} -a.s. for all t, (i) $Q^1 > Q^2$ (ii) $F^1(\omega, t, Y_t^2, Z_t^2) > F^2(\omega, t, Y_t^2, Z_t^2)$ (iii) $F^{1}(\omega, t, Y_{t}^{2}, Z_{t}^{1}) - F^{1}(\omega, t, Y_{t}^{2}, Z_{t}^{2})$ $> \min_{i \in \mathbb{I}_{t}} \{ (Z_{t}^{1} - Z_{t}^{2}) (e_{i} - E[X_{t+1} | \mathcal{F}_{t}]) \}.$ (iv) The map $Y_t \mapsto Y_t - F(\omega, t, Y_t, Z_t^1)$ is strictly increasing in Y_t. Then $Y_t^1 \ge Y_t^2 \mathbb{P}$ -a.s. for all t.

Discrete BSDEs

A Comparison Theorem

Proof:

Assume $Y_{t+1}^1 - Y_{t+1}^2 \ge 0$, then, omitting ω and t,

$$\begin{split} Y_t^1 &- Y_t^2 - F^1(Y_t^1, Z_t^1) + F^1(Y_t^2, Z_t^1) \\ &- [F^1(Y_t^2, Z_t^1) - F^1(Y_t^2, Z_t^2)] + (Z_t^1 - Z_t^2)M_{t+1} \\ &= [Y_{t+1}^1 - Y_{t+1}^2] + [F^1(Y_t^2, Z_t^2) - F^2(Y_t^2, Z_t^2)] \\ &\geq 0. \end{split}$$

This must hold \mathbb{P} -a.s., so it holds under taking the \mathcal{F}_t -conditional essential minimum of all terms. Hence

$$Y_t^1 - Y_t^2 - F^1(Y_t^1, Z_t^1) + F^1(Y_t^2, Z_t^1) \ge 0$$

and then as $Y_t \mapsto Y_t - F(Y_t, Z_t^1)$ is strictly increasing, the result follows by induction.

(日) (日) (日) (日) (日) (日) (日)

A General Theory of Backward Stochastic Difference Equations

- Discrete BSDEs
 - BSDEs and Nonlinear Expectations

- Given this theory, we can now construct explicit examples of nonlinear expectations.
- In fact, every nonlinear expectation can be constructed this way.

- Discrete BSDEs

-BSDEs and Nonlinear Expectations

BSDEs and Nonlinear Expectations

Theorem

The following statements are equivalent:

(i) *E*(·|*F_t*) is an *F_t*-consistent, translation invariant nonlinear expectation. (Axioms 1-5)

(ii) There is an F such that Y_t = ε(Q|F_t) solves a BSDE with driver F and terminal condition Q, where F satisfies the conditions of the comparison theorem, is independent of Y_t, and F(ω, t, Y_t, 0) = 0 ℙ-a.s. for all t.

In this case,

$$F(\omega, t, Y_t, Z_t) = \mathcal{E}(Z_t M_{t+1} | \mathcal{F}_t).$$

- Discrete BSDEs

-BSDEs and Nonlinear Expectations

Corollary

The nonlinear expectation $\mathcal{E}(\cdot|\mathcal{F}_t)$ has property '...' if and only if *F* has property '...' (in *Z*), where '...' is any of:

- Concavity
- Positive homogeneity
- Linearity
- Invariance under addition of martingale terms orthogonal to a given process
- (Lipshitz) continuity (in L¹ norm)
- ▶ etc...

Note, these statements are trivial, given the equivalence

$$F(\omega, t, Y_t, Z_t) = \mathcal{E}(Z_t M_{t+1} | \mathcal{F}_t).$$

A General Theory of Backward Stochastic Difference Equations

BSDEs and Nonlinear Expectations

- The proof of this is simple, but long.
- This result holds for both scalar and vector valued nonlinear expectations.
- Similar results have been obtained for the scalar Brownian Case, (Coquet et al, 2002), (Hu et al, 2008).
- In discrete time everything is simpler, and one can even obtain similar results for the more general nonlinear evaluations (Cohen & Elliott, forthcoming)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Discrete BSDEs

-BSDEs and Nonlinear Expectations

An Example

To demonstrate the complexity that can be achieved, consider a two step world where X_t takes one of two values with equal probability.

Assume that Z_t is written in the form $Z_t = [z, -z]$, which is unique up to equivalence \sim_{M_t} . We consider the concave function

$$F(\omega, t, Y_t, Z_t) = \min_{\pi \in [0.1, 0.9]} \{2(\pi - 0.5)z + \gamma(\pi - 0.5)^2\},\$$

where γ is a 'risk aversion' parameter (the smaller the value of γ , the more risk averse), which we shall set to $\gamma = 10$.

- Discrete BSDEs

-BSDEs and Nonlinear Expectations

Other Results:

- One can show under what conditions a generic monotone map L²(F_T) → ℝ can be extended to an F_t consistent nonlinear expectation.
- It is also possible, in general, to determine under what conditions the driver *F* can be determined from the solutions *Y_t*, even when the comparison theorem and normalisation conditions do not hold.
- These results are significantly stronger than available in continuous time.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Conclusions

Conclusions

- ► The theory of BSDEs can be expressed in discrete time.
- Various continuous time results, such as the comparison theorem, extend naturally to the discrete setting.
- The discrete time proofs are often simpler than in continuous time, and give stronger results.
- It forms a natural setting for nonlinear expectations, as every nonlinear expectation solves a BSDE.
- This has various implications for problems in economic regulation, and in other areas of optimal stochastic control.

