Students in this unit should read this unit outline carefully at the start of semester. It contains important information about the unit. If anything in it is unclear, please consult one of the teaching staff in the unit.
ABOUT THIS UNIT

- Unit Value: Three (3) credit points
- This unit aims to build on students’ knowledge in a variety of techniques and solution methods used for optimisation. The techniques require the formulation of problems, logical reasoning and interpretation of results. Integer programming, decision making under uncertainty, game theory, probabilistic inventory and Markov processes are the topics covered. Use is made of a statistical package to analyse data, solve integer programming problems and produce reports.
- Unit rationale: Dealing with uncertainty, using indicator variables in problems, solving and analysis of integer based problems and understanding the use of probabilistic models are an integral part of business decision making. This unit provides the background for making informed decisions about complex problems based on the principle of optimisation.

TEACHING STAFF

- Convenors Jenny Middeldorp E4A 538 Phone 9850 8558 jmiddled@efs.mq.edu.au
 Sibba Gudlaugsdottir E4A 516 Phone 9850 8582 sgudlaug@efs.mq.edu.au

Student should initially direct all their enquiries to Sibba Gudlaugsdottir who is the administrator for this unit.

CLASSES

<table>
<thead>
<tr>
<th>LECTURES</th>
<th>TUTORIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tue 9 E7B MASON</td>
<td>Mon 9 Mon 12</td>
</tr>
<tr>
<td>Tue 10 E7B MASON</td>
<td>Mon 10 Mon 13</td>
</tr>
<tr>
<td>Wed 9 X5B T1</td>
<td>Mon 11</td>
</tr>
</tbody>
</table>

- Students must attend the class to which they have been allocated.
- Attendance at tutorials is compulsory and will be monitored. Non submission of homework or poor attendance will jeopardise your final grade.

REQUIRED AND RECOMMENDED TEXTS AND/OR MATERIALS

- The set material is Quantitative Decision Making with Spreadsheet Applications by Lapin and Whisler 7th Ed.

 Students must purchase the study guides consisting of Lecture overheads.

- Reference books available in the library are as follows:
 Operations Research Applications and Algorithms (3d Ed) by Winston W. L.(PWS Kent)
 Operations Research: An Introduction by H A Taha (Macmillan)
UNIT WEB PAGE

- The web page for this unit is http://www.stat.mq.edu.au/units/stat379/index.htm

STUDENT EMAIL ADDRESSES

Students should at all times use their Macquarie University student e-mail addresses when contacting staff. Furthermore, students should check and read their Macquarie University student e-mail on a regular basis.

LEARNING OUTCOMES

The learning outcomes of this unit are outlined at the beginning of each section of the printed notes: However there are some generic outcomes which are listed below.

Students must be able to:
- Formulate problems involving integer and indicator variables
- Use a computer package to solve formulation problems.
- Interpret output and write up conclusions based on the output.
- Solve probabilistic based problems

In addition to the discipline-based learning objectives, all academic programs at Macquarie seek to develop students’ generic skills in a range of areas. One of the aims of this unit is that students develop their skills in the following:

- Foundation skills of literacy, numeracy and information technology;
- Communication skills;
- Critical analysis skills;
- Problem-solving skills;
- Creative thinking skills.

TEACHING AND LEARNING STRATEGY

- Students must attend three lectures each week at which new material is introduced
- Students are expected to have read through the material to be covered using the lecture notes provided in the study guides.
- Students are expected to attend one tutorial class each week for which they have attempted a solution to the homework problems that have been prescribed. They will also solve any new problems presented under the guidance of the tutor. A week-by-week list of the topics to be covered is available at the end of this document.
RELATIONSHIP BETWEEN ASSESSMENT AND LEARNING OUTCOMES

1: **Tutorials**
Tutorials will commence in week 2 of the semester.
The tutorials are designed as learning exercises. Participation in the tutorials is essential
for the understanding of the course content and the ability to solve problems.
*Attendance is compulsory and will be monitored. If a student misses more than two
tutorial classes he/she may be excluded from the unit, resulting in a fail grade.*

Before the tutorial each week, students should prepare the set of homework problems
which will have been handed out in the previous week’s lecture. During each tutorial the
students will work through some further problems.

2: **Homework**
All homework problems will be handed out in the previous week’s lecture.
The homeworks must be handed in to the tutor during the relevant tutorial in the week
they are due. Late homeworks will not be accepted.

Each homework task requires you to assimilate the procedures, content and methodology
covered during the preceding week and apply them to solving the problems presented. If
a student has satisfied all the behavioural objectives for a topic he/she will be able to
successfully complete the homework based on that week’s topic.

The feedback from the tutor during the tutorial should be used to remediate any part of
the subject matter with which the students are having difficulty.

3: **Examinations and Test**

Class Test
There will be a class test in this unit, worth 10% of the total assessment.
The class test will be held in **week 6** in the lecture on

 Tuesday 4th of April as 9:00am

Students may take into the test **ONE** A4 page of notes written on **ONE** side only.

Failure to attend the test without relevant documentation to explain the absence will
result in zero marks being awarded for the test and the possibility of exclusion from the
unit. The class test is **compulsory** and there will be NO make up tests.

If a student misses the class test he/she must submit relevant documentation or he/she
may receive a fail grade for the unit. A valid absence will mean that other coursework
marks will be scaled up.

The Class Test covers lecture material from weeks 1-5 inclusive and will be of 50
minutes duration.

Students should bring to the test a calculator, writing implements and a ruler

Marked class test papers will be returned to students during tutorials in week 8.
Solutions to the class test will be summarised in the tutorials in week 8.
Final Examination
The final examination will be held during the end of year exam session. It will be worth 90% of the total assessment and will cover all topics in the unit. Students may take into the final exam ONE A4 page of notes written on BOTH sides.

NOTE: To obtain a passing grade in the course a *satisfactory performance* will be required in the final examination irrespective of any marks gained during the semester. Evidence from your test and tutorial attendance will be used to determine the final grade.

The final examination enables students to display their understanding of each topic and to demonstrate their analytic skills in identifying the statistical methods appropriate to solving problems in a wider context.
The Examination period in first Semester is from 14th June to 30th of June.

Students are expected to present themselves for examination at the time and place designated in the University Examination Timetable. The timetable will be available in **Draft form** approximately eight weeks before the commencement of the examinations and in **Final form** approximately four weeks before the commencement of the examinations. The timetables can be found at:

The only exception to not sitting an examination at the designated time is because of documented illness or unavoidable disruption. In these circumstances you may wish to consider applying for Special Consideration. **Special consideration will only be granted to students whose performance in all parts of the coursework is satisfactory.** Information about unavoidable disruption and the special consideration process is available at

If a Supplementary Examination is granted as a result of the Special Consideration process the examination will be scheduled after the conclusion of the official examination period.

You are advised that it is Macquarie University policy not to set early examinations for individuals or groups of students. All students are expected to ensure that they are available until the end of the teaching semester, that is, the final day of the official examination period.

4: Summary of Assessments

<table>
<thead>
<tr>
<th>Summary of Assessment</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Test</td>
<td>10%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>90%</td>
</tr>
</tbody>
</table>
PLAGIARISM

The University defines plagiarism in its rules: "Plagiarism involves using the work of another person and presenting it as one's own." Plagiarism is a serious breach of the University's rules and carries significant penalties. Students must read the University's practices and procedures on plagiarism. These can be found in the *Handbook of Undergraduate Studies* or on the web at:

http://www.student.mq.edu.au/plagiarism/

The policies and procedures explain what plagiarism is, how to avoid it, the procedures that will be taken in cases of suspected plagiarism, and the penalties if a student is found guilty. Penalties may include a deduction of marks, failure in the unit, and/or referral to the University Discipline Committee.

UNIVERSITY POLICY ON GRADING

Academic Senate has a set of guidelines on the distribution of grades across the range from fail to high distinction. Your final result will include one of these grades plus a standardised numerical grade (SNG).

On occasion the raw mark for a unit (i.e., the total of your marks for each assessment item) may not be the same as the SNG received. Under the Senate guidelines, results may be scaled to ensure that there is a degree of comparability across the university, so that units with the same past performances of their students should achieve similar results.

It is important that students realise that the policy does not require that a minimum number of students are to be failed in any unit. In fact it does something like the opposite, in requiring examiners to explain their actions if more than 20% of students fail in a unit.

The process of scaling does not change the order of marks among students. A student who receives a higher raw mark than another will also receive a higher final scaled mark. For an explanation of the policy see

or

STUDENT SUPPORT SERVICES

Macquarie University provides a range of Academic Student Support Services. Details of these services can be accessed at

http://www.student.mq.edu.au.
Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Commencing</th>
<th>TOPIC</th>
<th>CHAPTER</th>
<th>Homework Due or TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27 February</td>
<td>Inventory Models</td>
<td>15 + 279 revision</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6 March</td>
<td>Inventory Models</td>
<td>16</td>
<td>Homework 1</td>
</tr>
<tr>
<td>3</td>
<td>13 March</td>
<td>Inventory Models</td>
<td>16</td>
<td>Homework 2</td>
</tr>
<tr>
<td>4</td>
<td>20 March</td>
<td>Markov Process</td>
<td>30 -6th Ed</td>
<td>Homework 3</td>
</tr>
<tr>
<td>5</td>
<td>27 March</td>
<td>Game Theory</td>
<td>28 -6th Ed</td>
<td>Homework 4</td>
</tr>
<tr>
<td>6</td>
<td>3 April</td>
<td>Class test during Tuesday lecture. Game Theory during Wednesday lecture.</td>
<td>28 -6th Ed</td>
<td>Class Test during lecture. No homework due this week, however, there will be tutorials.</td>
</tr>
<tr>
<td>7</td>
<td>10 April</td>
<td>Integer Programming</td>
<td>11.1+ Lecture Notes</td>
<td>Homework 5</td>
</tr>
</tbody>
</table>

Semester Break 14th April – 30th April

<table>
<thead>
<tr>
<th>Week</th>
<th>Commencing</th>
<th>TOPIC</th>
<th>CHAPTER</th>
<th>Homework Due or TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1 May</td>
<td>Integer Programming</td>
<td>11.1+ Lecture Notes</td>
<td>Go over Class Test during tutorial. No homework due this week.</td>
</tr>
<tr>
<td>9</td>
<td>8 May</td>
<td>Integer Programming</td>
<td>11.1 + Lecture Notes</td>
<td>Homework 6</td>
</tr>
<tr>
<td>10</td>
<td>15 May</td>
<td>Decision Making</td>
<td>6 + Lecture Notes</td>
<td>Homework 7</td>
</tr>
<tr>
<td>11</td>
<td>22 May</td>
<td>Decision Making</td>
<td>6 + Lecture Notes</td>
<td>Homework 8</td>
</tr>
<tr>
<td>12</td>
<td>29 May</td>
<td>Decision Making</td>
<td>5+ Lecture Notes</td>
<td>Homework 9</td>
</tr>
<tr>
<td>13</td>
<td>5 June</td>
<td>Review</td>
<td></td>
<td>No homework due this week, however, there will be tutorials.</td>
</tr>
</tbody>
</table>